DrishtiSharma commited on
Commit
619707e
·
1 Parent(s): 5d26ffe

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-bg-d2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-bg-d2
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3421
20
+ - Wer: 0.2860
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.00025
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 700
48
+ - num_epochs: 35
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 6.8791 | 1.74 | 200 | 3.1902 | 1.0 |
56
+ | 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 |
57
+ | 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 |
58
+ | 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 |
59
+ | 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 |
60
+ | 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 |
61
+ | 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 |
62
+ | 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 |
63
+ | 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 |
64
+ | 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 |
65
+ | 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 |
66
+ | 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 |
67
+ | 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 |
68
+ | 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 |
69
+ | 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 |
70
+ | 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 |
71
+ | 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 |
72
+ | 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 |
73
+ | 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 |
74
+ | 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.16.2
80
+ - Pytorch 1.10.0+cu111
81
+ - Datasets 1.18.3
82
+ - Tokenizers 0.11.0