DrishtiSharma
commited on
Commit
·
619707e
1
Parent(s):
5d26ffe
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-bg-d2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-bg-d2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3421
|
20 |
+
- Wer: 0.2860
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.00025
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 700
|
48 |
+
- num_epochs: 35
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 6.8791 | 1.74 | 200 | 3.1902 | 1.0 |
|
56 |
+
| 3.0441 | 3.48 | 400 | 2.8098 | 0.9864 |
|
57 |
+
| 1.1499 | 5.22 | 600 | 0.4668 | 0.5014 |
|
58 |
+
| 0.4968 | 6.96 | 800 | 0.4162 | 0.4472 |
|
59 |
+
| 0.3553 | 8.7 | 1000 | 0.3580 | 0.3777 |
|
60 |
+
| 0.3027 | 10.43 | 1200 | 0.3422 | 0.3506 |
|
61 |
+
| 0.2562 | 12.17 | 1400 | 0.3556 | 0.3639 |
|
62 |
+
| 0.2272 | 13.91 | 1600 | 0.3621 | 0.3583 |
|
63 |
+
| 0.2125 | 15.65 | 1800 | 0.3436 | 0.3358 |
|
64 |
+
| 0.1904 | 17.39 | 2000 | 0.3650 | 0.3545 |
|
65 |
+
| 0.1695 | 19.13 | 2200 | 0.3366 | 0.3241 |
|
66 |
+
| 0.1532 | 20.87 | 2400 | 0.3550 | 0.3311 |
|
67 |
+
| 0.1453 | 22.61 | 2600 | 0.3582 | 0.3131 |
|
68 |
+
| 0.1359 | 24.35 | 2800 | 0.3524 | 0.3084 |
|
69 |
+
| 0.1233 | 26.09 | 3000 | 0.3503 | 0.2973 |
|
70 |
+
| 0.1114 | 27.83 | 3200 | 0.3434 | 0.2946 |
|
71 |
+
| 0.1051 | 29.57 | 3400 | 0.3474 | 0.2956 |
|
72 |
+
| 0.0965 | 31.3 | 3600 | 0.3426 | 0.2907 |
|
73 |
+
| 0.0923 | 33.04 | 3800 | 0.3478 | 0.2894 |
|
74 |
+
| 0.0894 | 34.78 | 4000 | 0.3421 | 0.2860 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.16.2
|
80 |
+
- Pytorch 1.10.0+cu111
|
81 |
+
- Datasets 1.18.3
|
82 |
+
- Tokenizers 0.11.0
|