DrishtiSharma commited on
Commit
c6a5b93
·
1 Parent(s): 04ad936

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
@@ -13,7 +14,7 @@ model-index:
13
  name: Image Classification
14
  type: image-classification
15
  dataset:
16
- name: imagefolder
17
  type: imagefolder
18
  config: default
19
  split: train
@@ -21,7 +22,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9436769394261424
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  # finetuned-SwinT-Indian-Food-Classification-v2
31
 
32
- This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.2368
35
- - Accuracy: 0.9437
36
 
37
  ## Model description
38
 
 
1
  ---
2
  license: apache-2.0
3
  tags:
4
+ - image-classification
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
+ name: Indian-Food-Images
18
  type: imagefolder
19
  config: default
20
  split: train
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9458023379383634
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # finetuned-SwinT-Indian-Food-Classification-v2
32
 
33
+ This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2226
36
+ - Accuracy: 0.9458
37
 
38
  ## Model description
39