--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-SwinT-Indian-Food-Classification-v1 results: - task: name: Image Classification type: image-classification dataset: name: Indian-Food-Images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9373007438894793 --- # finetuned-SwinT-Indian-Food-Classification-v1 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2433 | 0.3 | 100 | 0.7067 | 0.8193 | | 0.6458 | 0.6 | 200 | 0.4692 | 0.8789 | | 0.635 | 0.9 | 300 | 0.4864 | 0.8682 | | 0.6219 | 1.2 | 400 | 0.4240 | 0.8831 | | 0.4889 | 1.5 | 500 | 0.3840 | 0.8948 | | 0.2963 | 1.8 | 600 | 0.4279 | 0.8959 | | 0.4405 | 2.1 | 700 | 0.3508 | 0.9118 | | 0.3803 | 2.4 | 800 | 0.3659 | 0.9086 | | 0.3499 | 2.7 | 900 | 0.3347 | 0.9214 | | 0.3131 | 3.0 | 1000 | 0.2910 | 0.9277 | | 0.3036 | 3.3 | 1100 | 0.3938 | 0.9107 | | 0.2697 | 3.6 | 1200 | 0.3566 | 0.9171 | | 0.1551 | 3.9 | 1300 | 0.3369 | 0.9341 | | 0.0752 | 4.2 | 1400 | 0.2868 | 0.9373 | | 0.132 | 4.5 | 1500 | 0.3023 | 0.9373 | | 0.1133 | 4.8 | 1600 | 0.2978 | 0.9416 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1