DouglasPontes commited on
Commit
4be76ce
·
verified ·
1 Parent(s): 4d1b9b3

Model save

Browse files
Files changed (2) hide show
  1. README.md +356 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: cardiffnlp/twitter-roberta-base-2019-90m
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: 2020-Q4-50p-filtered
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # 2020-Q4-50p-filtered
15
+
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 2.6114
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 4.1e-07
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - training_steps: 2400000
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:-------:|:---------------:|
49
+ | No log | 0.03 | 8000 | 2.9660 |
50
+ | 3.1627 | 0.07 | 16000 | 2.8754 |
51
+ | 3.1627 | 0.1 | 24000 | 2.8263 |
52
+ | 2.9611 | 0.13 | 32000 | 2.7973 |
53
+ | 2.9611 | 0.17 | 40000 | 2.7741 |
54
+ | 2.8986 | 0.2 | 48000 | 2.7574 |
55
+ | 2.8986 | 0.24 | 56000 | 2.7413 |
56
+ | 2.8726 | 0.27 | 64000 | 2.7240 |
57
+ | 2.8726 | 0.3 | 72000 | 2.7239 |
58
+ | 2.8558 | 0.34 | 80000 | 2.7132 |
59
+ | 2.8558 | 0.37 | 88000 | 2.7030 |
60
+ | 2.8459 | 0.4 | 96000 | 2.7112 |
61
+ | 2.8459 | 0.44 | 104000 | 2.6918 |
62
+ | 2.8379 | 0.47 | 112000 | 2.7017 |
63
+ | 2.8379 | 0.51 | 120000 | 2.6920 |
64
+ | 2.8265 | 0.54 | 128000 | 2.6971 |
65
+ | 2.8265 | 0.57 | 136000 | 2.6924 |
66
+ | 2.8227 | 0.61 | 144000 | 2.6952 |
67
+ | 2.8227 | 0.64 | 152000 | 2.6811 |
68
+ | 2.8209 | 0.67 | 160000 | 2.6829 |
69
+ | 2.8209 | 0.71 | 168000 | 2.6883 |
70
+ | 2.8147 | 0.74 | 176000 | 2.6675 |
71
+ | 2.8147 | 0.77 | 184000 | 2.6674 |
72
+ | 2.8077 | 0.81 | 192000 | 2.6661 |
73
+ | 2.8077 | 0.84 | 200000 | 2.6773 |
74
+ | 2.8058 | 0.88 | 208000 | 2.6734 |
75
+ | 2.8058 | 0.91 | 216000 | 2.6742 |
76
+ | 2.812 | 0.94 | 224000 | 2.6666 |
77
+ | 2.812 | 0.98 | 232000 | 2.6642 |
78
+ | 2.8025 | 1.01 | 240000 | 2.6681 |
79
+ | 2.8025 | 1.04 | 248000 | 2.6663 |
80
+ | 2.809 | 1.08 | 256000 | 2.6645 |
81
+ | 2.809 | 1.11 | 264000 | 2.6529 |
82
+ | 2.8073 | 1.15 | 272000 | 2.6623 |
83
+ | 2.8073 | 1.18 | 280000 | 2.6551 |
84
+ | 2.8005 | 1.21 | 288000 | 2.6643 |
85
+ | 2.8005 | 1.25 | 296000 | 2.6628 |
86
+ | 2.7988 | 1.28 | 304000 | 2.6583 |
87
+ | 2.7988 | 1.31 | 312000 | 2.6594 |
88
+ | 2.7887 | 1.35 | 320000 | 2.6544 |
89
+ | 2.7887 | 1.38 | 328000 | 2.6516 |
90
+ | 2.7964 | 1.41 | 336000 | 2.6555 |
91
+ | 2.7964 | 1.45 | 344000 | 2.6551 |
92
+ | 2.7919 | 1.48 | 352000 | 2.6508 |
93
+ | 2.7919 | 1.52 | 360000 | 2.6486 |
94
+ | 2.8058 | 1.55 | 368000 | 2.6484 |
95
+ | 2.8058 | 1.58 | 376000 | 2.6532 |
96
+ | 2.796 | 1.62 | 384000 | 2.6473 |
97
+ | 2.796 | 1.65 | 392000 | 2.6489 |
98
+ | 2.799 | 1.68 | 400000 | 2.6476 |
99
+ | 2.799 | 1.72 | 408000 | 2.6417 |
100
+ | 2.7991 | 1.75 | 416000 | 2.6545 |
101
+ | 2.7991 | 1.79 | 424000 | 2.6466 |
102
+ | 2.792 | 1.82 | 432000 | 2.6397 |
103
+ | 2.792 | 1.85 | 440000 | 2.6428 |
104
+ | 2.7972 | 1.89 | 448000 | 2.6446 |
105
+ | 2.7972 | 1.92 | 456000 | 2.6434 |
106
+ | 2.798 | 1.95 | 464000 | 2.6490 |
107
+ | 2.798 | 1.99 | 472000 | 2.6502 |
108
+ | 2.7914 | 2.02 | 480000 | 2.6407 |
109
+ | 2.7914 | 2.05 | 488000 | 2.6284 |
110
+ | 2.7932 | 2.09 | 496000 | 2.6426 |
111
+ | 2.7932 | 2.12 | 504000 | 2.6423 |
112
+ | 2.787 | 2.16 | 512000 | 2.6385 |
113
+ | 2.787 | 2.19 | 520000 | 2.6388 |
114
+ | 2.7893 | 2.22 | 528000 | 2.6422 |
115
+ | 2.7893 | 2.26 | 536000 | 2.6410 |
116
+ | 2.7889 | 2.29 | 544000 | 2.6337 |
117
+ | 2.7889 | 2.32 | 552000 | 2.6280 |
118
+ | 2.791 | 2.36 | 560000 | 2.6364 |
119
+ | 2.791 | 2.39 | 568000 | 2.6341 |
120
+ | 2.7883 | 2.43 | 576000 | 2.6317 |
121
+ | 2.7883 | 2.46 | 584000 | 2.6278 |
122
+ | 2.7889 | 2.49 | 592000 | 2.6357 |
123
+ | 2.7889 | 2.53 | 600000 | 2.6341 |
124
+ | 2.7838 | 2.56 | 608000 | 2.6333 |
125
+ | 2.7838 | 2.59 | 616000 | 2.6382 |
126
+ | 2.7873 | 2.63 | 624000 | 2.6275 |
127
+ | 2.7873 | 2.66 | 632000 | 2.6260 |
128
+ | 2.7813 | 2.69 | 640000 | 2.6373 |
129
+ | 2.7813 | 2.73 | 648000 | 2.6349 |
130
+ | 2.7858 | 2.76 | 656000 | 2.6223 |
131
+ | 2.7858 | 2.8 | 664000 | 2.6276 |
132
+ | 2.7895 | 2.83 | 672000 | 2.6355 |
133
+ | 2.7895 | 2.86 | 680000 | 2.6270 |
134
+ | 2.7873 | 2.9 | 688000 | 2.6244 |
135
+ | 2.7873 | 2.93 | 696000 | 2.6397 |
136
+ | 2.7866 | 2.96 | 704000 | 2.6303 |
137
+ | 2.7866 | 3.0 | 712000 | 2.6167 |
138
+ | 2.7865 | 3.03 | 720000 | 2.6265 |
139
+ | 2.7865 | 3.07 | 728000 | 2.6403 |
140
+ | 2.7716 | 3.1 | 736000 | 2.6247 |
141
+ | 2.7716 | 3.13 | 744000 | 2.6255 |
142
+ | 2.779 | 3.17 | 752000 | 2.6316 |
143
+ | 2.779 | 3.2 | 760000 | 2.6270 |
144
+ | 2.7811 | 3.23 | 768000 | 2.6268 |
145
+ | 2.7811 | 3.27 | 776000 | 2.6147 |
146
+ | 2.7797 | 3.3 | 784000 | 2.6271 |
147
+ | 2.7797 | 3.33 | 792000 | 2.6243 |
148
+ | 2.7798 | 3.37 | 800000 | 2.6240 |
149
+ | 2.7798 | 3.4 | 808000 | 2.6225 |
150
+ | 2.7774 | 3.44 | 816000 | 2.6232 |
151
+ | 2.7774 | 3.47 | 824000 | 2.6247 |
152
+ | 2.7744 | 3.5 | 832000 | 2.6270 |
153
+ | 2.7744 | 3.54 | 840000 | 2.6175 |
154
+ | 2.7786 | 3.57 | 848000 | 2.6264 |
155
+ | 2.7786 | 3.6 | 856000 | 2.6192 |
156
+ | 2.7829 | 3.64 | 864000 | 2.6278 |
157
+ | 2.7829 | 3.67 | 872000 | 2.6237 |
158
+ | 2.776 | 3.71 | 880000 | 2.6202 |
159
+ | 2.776 | 3.74 | 888000 | 2.6216 |
160
+ | 2.7797 | 3.77 | 896000 | 2.6174 |
161
+ | 2.7797 | 3.81 | 904000 | 2.6239 |
162
+ | 2.7744 | 3.84 | 912000 | 2.6163 |
163
+ | 2.7744 | 3.87 | 920000 | 2.6198 |
164
+ | 2.7713 | 3.91 | 928000 | 2.6236 |
165
+ | 2.7713 | 3.94 | 936000 | 2.6226 |
166
+ | 2.7853 | 3.97 | 944000 | 2.6175 |
167
+ | 2.7853 | 4.01 | 952000 | 2.6189 |
168
+ | 2.7766 | 4.04 | 960000 | 2.6192 |
169
+ | 2.7766 | 4.08 | 968000 | 2.6318 |
170
+ | 2.7851 | 4.11 | 976000 | 2.6210 |
171
+ | 2.7851 | 4.14 | 984000 | 2.6172 |
172
+ | 2.7804 | 4.18 | 992000 | 2.6200 |
173
+ | 2.7804 | 4.21 | 1000000 | 2.6157 |
174
+ | 2.773 | 4.24 | 1008000 | 2.6098 |
175
+ | 2.773 | 4.28 | 1016000 | 2.6156 |
176
+ | 2.7818 | 4.31 | 1024000 | 2.6149 |
177
+ | 2.7818 | 4.35 | 1032000 | 2.6121 |
178
+ | 2.7736 | 4.38 | 1040000 | 2.6150 |
179
+ | 2.7736 | 4.41 | 1048000 | 2.6156 |
180
+ | 2.7761 | 4.45 | 1056000 | 2.6171 |
181
+ | 2.7761 | 4.48 | 1064000 | 2.6124 |
182
+ | 2.7789 | 4.51 | 1072000 | 2.6277 |
183
+ | 2.7789 | 4.55 | 1080000 | 2.6138 |
184
+ | 2.7744 | 4.58 | 1088000 | 2.6081 |
185
+ | 2.7744 | 4.61 | 1096000 | 2.6201 |
186
+ | 2.77 | 4.65 | 1104000 | 2.6171 |
187
+ | 2.77 | 4.68 | 1112000 | 2.6099 |
188
+ | 2.772 | 4.72 | 1120000 | 2.6141 |
189
+ | 2.772 | 4.75 | 1128000 | 2.6174 |
190
+ | 2.7709 | 4.78 | 1136000 | 2.6200 |
191
+ | 2.7709 | 4.82 | 1144000 | 2.6150 |
192
+ | 2.7724 | 4.85 | 1152000 | 2.6042 |
193
+ | 2.7724 | 4.88 | 1160000 | 2.6158 |
194
+ | 2.7763 | 4.92 | 1168000 | 2.6167 |
195
+ | 2.7763 | 4.95 | 1176000 | 2.6174 |
196
+ | 2.7736 | 4.99 | 1184000 | 2.6099 |
197
+ | 2.7736 | 5.02 | 1192000 | 2.6076 |
198
+ | 2.7692 | 5.05 | 1200000 | 2.6088 |
199
+ | 2.7692 | 5.09 | 1208000 | 2.6174 |
200
+ | 2.7794 | 5.12 | 1216000 | 2.6041 |
201
+ | 2.7794 | 5.15 | 1224000 | 2.6051 |
202
+ | 2.7709 | 5.19 | 1232000 | 2.6093 |
203
+ | 2.7709 | 5.22 | 1240000 | 2.6062 |
204
+ | 2.7727 | 5.25 | 1248000 | 2.6052 |
205
+ | 2.7727 | 5.29 | 1256000 | 2.6126 |
206
+ | 2.7686 | 5.32 | 1264000 | 2.6099 |
207
+ | 2.7686 | 5.36 | 1272000 | 2.6192 |
208
+ | 2.7668 | 5.39 | 1280000 | 2.6166 |
209
+ | 2.7668 | 5.42 | 1288000 | 2.6042 |
210
+ | 2.7777 | 5.46 | 1296000 | 2.6038 |
211
+ | 2.7777 | 5.49 | 1304000 | 2.6119 |
212
+ | 2.7737 | 5.52 | 1312000 | 2.6155 |
213
+ | 2.7737 | 5.56 | 1320000 | 2.6236 |
214
+ | 2.7757 | 5.59 | 1328000 | 2.6124 |
215
+ | 2.7757 | 5.63 | 1336000 | 2.5993 |
216
+ | 2.7757 | 5.66 | 1344000 | 2.6132 |
217
+ | 2.7757 | 5.69 | 1352000 | 2.6063 |
218
+ | 2.7748 | 5.73 | 1360000 | 2.6130 |
219
+ | 2.7748 | 5.76 | 1368000 | 2.6100 |
220
+ | 2.769 | 5.79 | 1376000 | 2.6024 |
221
+ | 2.769 | 5.83 | 1384000 | 2.6062 |
222
+ | 2.7713 | 5.86 | 1392000 | 2.6138 |
223
+ | 2.7713 | 5.89 | 1400000 | 2.6025 |
224
+ | 2.7766 | 5.93 | 1408000 | 2.6088 |
225
+ | 2.7766 | 5.96 | 1416000 | 2.6138 |
226
+ | 2.7727 | 6.0 | 1424000 | 2.6048 |
227
+ | 2.7727 | 6.03 | 1432000 | 2.6068 |
228
+ | 2.7737 | 6.06 | 1440000 | 2.6144 |
229
+ | 2.7737 | 6.1 | 1448000 | 2.6051 |
230
+ | 2.778 | 6.13 | 1456000 | 2.6158 |
231
+ | 2.778 | 6.16 | 1464000 | 2.6152 |
232
+ | 2.7767 | 6.2 | 1472000 | 2.6019 |
233
+ | 2.7767 | 6.23 | 1480000 | 2.6117 |
234
+ | 2.7706 | 6.27 | 1488000 | 2.6065 |
235
+ | 2.7706 | 6.3 | 1496000 | 2.6122 |
236
+ | 2.7775 | 6.33 | 1504000 | 2.6100 |
237
+ | 2.7775 | 6.37 | 1512000 | 2.6100 |
238
+ | 2.7753 | 6.4 | 1520000 | 2.6051 |
239
+ | 2.7753 | 6.43 | 1528000 | 2.6037 |
240
+ | 2.7691 | 6.47 | 1536000 | 2.6037 |
241
+ | 2.7691 | 6.5 | 1544000 | 2.5992 |
242
+ | 2.758 | 6.53 | 1552000 | 2.6080 |
243
+ | 2.758 | 6.57 | 1560000 | 2.6139 |
244
+ | 2.7722 | 6.6 | 1568000 | 2.6000 |
245
+ | 2.7722 | 6.64 | 1576000 | 2.6107 |
246
+ | 2.7737 | 6.67 | 1584000 | 2.6057 |
247
+ | 2.7737 | 6.7 | 1592000 | 2.6063 |
248
+ | 2.7722 | 6.74 | 1600000 | 2.6028 |
249
+ | 2.7722 | 6.77 | 1608000 | 2.5995 |
250
+ | 2.7659 | 6.8 | 1616000 | 2.6042 |
251
+ | 2.7659 | 6.84 | 1624000 | 2.6013 |
252
+ | 2.7769 | 6.87 | 1632000 | 2.6028 |
253
+ | 2.7769 | 6.91 | 1640000 | 2.6080 |
254
+ | 2.7732 | 6.94 | 1648000 | 2.5994 |
255
+ | 2.7732 | 6.97 | 1656000 | 2.6063 |
256
+ | 2.7708 | 7.01 | 1664000 | 2.6120 |
257
+ | 2.7708 | 7.04 | 1672000 | 2.6023 |
258
+ | 2.7614 | 7.07 | 1680000 | 2.6091 |
259
+ | 2.7614 | 7.11 | 1688000 | 2.6003 |
260
+ | 2.7655 | 7.14 | 1696000 | 2.6016 |
261
+ | 2.7655 | 7.17 | 1704000 | 2.6058 |
262
+ | 2.7747 | 7.21 | 1712000 | 2.6045 |
263
+ | 2.7747 | 7.24 | 1720000 | 2.6097 |
264
+ | 2.7685 | 7.28 | 1728000 | 2.6068 |
265
+ | 2.7685 | 7.31 | 1736000 | 2.6037 |
266
+ | 2.7736 | 7.34 | 1744000 | 2.6125 |
267
+ | 2.7736 | 7.38 | 1752000 | 2.6113 |
268
+ | 2.7666 | 7.41 | 1760000 | 2.5972 |
269
+ | 2.7666 | 7.44 | 1768000 | 2.6081 |
270
+ | 2.7658 | 7.48 | 1776000 | 2.6090 |
271
+ | 2.7658 | 7.51 | 1784000 | 2.6126 |
272
+ | 2.7802 | 7.55 | 1792000 | 2.6021 |
273
+ | 2.7802 | 7.58 | 1800000 | 2.6087 |
274
+ | 2.7749 | 7.61 | 1808000 | 2.5986 |
275
+ | 2.7749 | 7.65 | 1816000 | 2.6002 |
276
+ | 2.7689 | 7.68 | 1824000 | 2.6023 |
277
+ | 2.7689 | 7.71 | 1832000 | 2.5969 |
278
+ | 2.7699 | 7.75 | 1840000 | 2.5975 |
279
+ | 2.7699 | 7.78 | 1848000 | 2.6070 |
280
+ | 2.7715 | 7.81 | 1856000 | 2.6035 |
281
+ | 2.7715 | 7.85 | 1864000 | 2.6049 |
282
+ | 2.7653 | 7.88 | 1872000 | 2.6129 |
283
+ | 2.7653 | 7.92 | 1880000 | 2.6027 |
284
+ | 2.7729 | 7.95 | 1888000 | 2.6000 |
285
+ | 2.7729 | 7.98 | 1896000 | 2.6138 |
286
+ | 2.7693 | 8.02 | 1904000 | 2.6052 |
287
+ | 2.7693 | 8.05 | 1912000 | 2.6060 |
288
+ | 2.7585 | 8.08 | 1920000 | 2.6065 |
289
+ | 2.7585 | 8.12 | 1928000 | 2.6105 |
290
+ | 2.7652 | 8.15 | 1936000 | 2.6075 |
291
+ | 2.7652 | 8.19 | 1944000 | 2.6076 |
292
+ | 2.7508 | 8.22 | 1952000 | 2.6083 |
293
+ | 2.7508 | 8.25 | 1960000 | 2.6112 |
294
+ | 2.7678 | 8.29 | 1968000 | 2.6019 |
295
+ | 2.7678 | 8.32 | 1976000 | 2.6029 |
296
+ | 2.7653 | 8.35 | 1984000 | 2.6087 |
297
+ | 2.7653 | 8.39 | 1992000 | 2.6064 |
298
+ | 2.7661 | 8.42 | 2000000 | 2.6031 |
299
+ | 2.7661 | 8.45 | 2008000 | 2.6051 |
300
+ | 2.7742 | 8.49 | 2016000 | 2.6091 |
301
+ | 2.7742 | 8.52 | 2024000 | 2.5978 |
302
+ | 2.7748 | 8.56 | 2032000 | 2.6131 |
303
+ | 2.7748 | 8.59 | 2040000 | 2.6030 |
304
+ | 2.7706 | 8.62 | 2048000 | 2.6036 |
305
+ | 2.7706 | 8.66 | 2056000 | 2.5998 |
306
+ | 2.769 | 8.69 | 2064000 | 2.6013 |
307
+ | 2.769 | 8.72 | 2072000 | 2.6000 |
308
+ | 2.7733 | 8.76 | 2080000 | 2.6062 |
309
+ | 2.7733 | 8.79 | 2088000 | 2.6057 |
310
+ | 2.7714 | 8.83 | 2096000 | 2.6021 |
311
+ | 2.7714 | 8.86 | 2104000 | 2.6028 |
312
+ | 2.7754 | 8.89 | 2112000 | 2.5964 |
313
+ | 2.7754 | 8.93 | 2120000 | 2.6015 |
314
+ | 2.7683 | 8.96 | 2128000 | 2.6060 |
315
+ | 2.7683 | 8.99 | 2136000 | 2.6082 |
316
+ | 2.7758 | 9.03 | 2144000 | 2.6130 |
317
+ | 2.7758 | 9.06 | 2152000 | 2.6071 |
318
+ | 2.768 | 9.09 | 2160000 | 2.6141 |
319
+ | 2.768 | 9.13 | 2168000 | 2.6003 |
320
+ | 2.7653 | 9.16 | 2176000 | 2.5987 |
321
+ | 2.7653 | 9.2 | 2184000 | 2.6066 |
322
+ | 2.7621 | 9.23 | 2192000 | 2.6041 |
323
+ | 2.7621 | 9.26 | 2200000 | 2.6060 |
324
+ | 2.7712 | 9.3 | 2208000 | 2.6144 |
325
+ | 2.7712 | 9.33 | 2216000 | 2.5990 |
326
+ | 2.7718 | 9.36 | 2224000 | 2.6039 |
327
+ | 2.7718 | 9.4 | 2232000 | 2.5931 |
328
+ | 2.774 | 9.43 | 2240000 | 2.6129 |
329
+ | 2.774 | 9.47 | 2248000 | 2.6095 |
330
+ | 2.765 | 9.5 | 2256000 | 2.5932 |
331
+ | 2.765 | 9.53 | 2264000 | 2.6010 |
332
+ | 2.7754 | 9.57 | 2272000 | 2.6078 |
333
+ | 2.7754 | 9.6 | 2280000 | 2.5981 |
334
+ | 2.771 | 9.63 | 2288000 | 2.6052 |
335
+ | 2.771 | 9.67 | 2296000 | 2.5944 |
336
+ | 2.7757 | 9.7 | 2304000 | 2.6045 |
337
+ | 2.7757 | 9.73 | 2312000 | 2.5971 |
338
+ | 2.7685 | 9.77 | 2320000 | 2.6101 |
339
+ | 2.7685 | 9.8 | 2328000 | 2.5964 |
340
+ | 2.7708 | 9.84 | 2336000 | 2.5974 |
341
+ | 2.7708 | 9.87 | 2344000 | 2.5953 |
342
+ | 2.7695 | 9.9 | 2352000 | 2.5981 |
343
+ | 2.7695 | 9.94 | 2360000 | 2.6095 |
344
+ | 2.7702 | 9.97 | 2368000 | 2.6042 |
345
+ | 2.7702 | 10.0 | 2376000 | 2.6095 |
346
+ | 2.7614 | 10.04 | 2384000 | 2.6007 |
347
+ | 2.7614 | 10.07 | 2392000 | 2.6017 |
348
+ | 2.7708 | 10.11 | 2400000 | 2.6114 |
349
+
350
+
351
+ ### Framework versions
352
+
353
+ - Transformers 4.35.0.dev0
354
+ - Pytorch 2.0.1+cu117
355
+ - Datasets 2.14.5
356
+ - Tokenizers 0.14.0
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1267ade1b3a43cbec0b600b720e3a68640152328ccd811612c663266743e6af7
3
  size 498859189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97a49c06d3baf8b0261ff13142c75a6bcfb2c05ee508cec74ecf14f0af27704
3
  size 498859189