DouglasPontes
commited on
Model save
Browse files- README.md +356 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: 2020-Q4-50p-filtered
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# 2020-Q4-50p-filtered
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.6114
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 4.1e-07
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- training_steps: 2400000
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
+
| No log | 0.03 | 8000 | 2.9660 |
|
50 |
+
| 3.1627 | 0.07 | 16000 | 2.8754 |
|
51 |
+
| 3.1627 | 0.1 | 24000 | 2.8263 |
|
52 |
+
| 2.9611 | 0.13 | 32000 | 2.7973 |
|
53 |
+
| 2.9611 | 0.17 | 40000 | 2.7741 |
|
54 |
+
| 2.8986 | 0.2 | 48000 | 2.7574 |
|
55 |
+
| 2.8986 | 0.24 | 56000 | 2.7413 |
|
56 |
+
| 2.8726 | 0.27 | 64000 | 2.7240 |
|
57 |
+
| 2.8726 | 0.3 | 72000 | 2.7239 |
|
58 |
+
| 2.8558 | 0.34 | 80000 | 2.7132 |
|
59 |
+
| 2.8558 | 0.37 | 88000 | 2.7030 |
|
60 |
+
| 2.8459 | 0.4 | 96000 | 2.7112 |
|
61 |
+
| 2.8459 | 0.44 | 104000 | 2.6918 |
|
62 |
+
| 2.8379 | 0.47 | 112000 | 2.7017 |
|
63 |
+
| 2.8379 | 0.51 | 120000 | 2.6920 |
|
64 |
+
| 2.8265 | 0.54 | 128000 | 2.6971 |
|
65 |
+
| 2.8265 | 0.57 | 136000 | 2.6924 |
|
66 |
+
| 2.8227 | 0.61 | 144000 | 2.6952 |
|
67 |
+
| 2.8227 | 0.64 | 152000 | 2.6811 |
|
68 |
+
| 2.8209 | 0.67 | 160000 | 2.6829 |
|
69 |
+
| 2.8209 | 0.71 | 168000 | 2.6883 |
|
70 |
+
| 2.8147 | 0.74 | 176000 | 2.6675 |
|
71 |
+
| 2.8147 | 0.77 | 184000 | 2.6674 |
|
72 |
+
| 2.8077 | 0.81 | 192000 | 2.6661 |
|
73 |
+
| 2.8077 | 0.84 | 200000 | 2.6773 |
|
74 |
+
| 2.8058 | 0.88 | 208000 | 2.6734 |
|
75 |
+
| 2.8058 | 0.91 | 216000 | 2.6742 |
|
76 |
+
| 2.812 | 0.94 | 224000 | 2.6666 |
|
77 |
+
| 2.812 | 0.98 | 232000 | 2.6642 |
|
78 |
+
| 2.8025 | 1.01 | 240000 | 2.6681 |
|
79 |
+
| 2.8025 | 1.04 | 248000 | 2.6663 |
|
80 |
+
| 2.809 | 1.08 | 256000 | 2.6645 |
|
81 |
+
| 2.809 | 1.11 | 264000 | 2.6529 |
|
82 |
+
| 2.8073 | 1.15 | 272000 | 2.6623 |
|
83 |
+
| 2.8073 | 1.18 | 280000 | 2.6551 |
|
84 |
+
| 2.8005 | 1.21 | 288000 | 2.6643 |
|
85 |
+
| 2.8005 | 1.25 | 296000 | 2.6628 |
|
86 |
+
| 2.7988 | 1.28 | 304000 | 2.6583 |
|
87 |
+
| 2.7988 | 1.31 | 312000 | 2.6594 |
|
88 |
+
| 2.7887 | 1.35 | 320000 | 2.6544 |
|
89 |
+
| 2.7887 | 1.38 | 328000 | 2.6516 |
|
90 |
+
| 2.7964 | 1.41 | 336000 | 2.6555 |
|
91 |
+
| 2.7964 | 1.45 | 344000 | 2.6551 |
|
92 |
+
| 2.7919 | 1.48 | 352000 | 2.6508 |
|
93 |
+
| 2.7919 | 1.52 | 360000 | 2.6486 |
|
94 |
+
| 2.8058 | 1.55 | 368000 | 2.6484 |
|
95 |
+
| 2.8058 | 1.58 | 376000 | 2.6532 |
|
96 |
+
| 2.796 | 1.62 | 384000 | 2.6473 |
|
97 |
+
| 2.796 | 1.65 | 392000 | 2.6489 |
|
98 |
+
| 2.799 | 1.68 | 400000 | 2.6476 |
|
99 |
+
| 2.799 | 1.72 | 408000 | 2.6417 |
|
100 |
+
| 2.7991 | 1.75 | 416000 | 2.6545 |
|
101 |
+
| 2.7991 | 1.79 | 424000 | 2.6466 |
|
102 |
+
| 2.792 | 1.82 | 432000 | 2.6397 |
|
103 |
+
| 2.792 | 1.85 | 440000 | 2.6428 |
|
104 |
+
| 2.7972 | 1.89 | 448000 | 2.6446 |
|
105 |
+
| 2.7972 | 1.92 | 456000 | 2.6434 |
|
106 |
+
| 2.798 | 1.95 | 464000 | 2.6490 |
|
107 |
+
| 2.798 | 1.99 | 472000 | 2.6502 |
|
108 |
+
| 2.7914 | 2.02 | 480000 | 2.6407 |
|
109 |
+
| 2.7914 | 2.05 | 488000 | 2.6284 |
|
110 |
+
| 2.7932 | 2.09 | 496000 | 2.6426 |
|
111 |
+
| 2.7932 | 2.12 | 504000 | 2.6423 |
|
112 |
+
| 2.787 | 2.16 | 512000 | 2.6385 |
|
113 |
+
| 2.787 | 2.19 | 520000 | 2.6388 |
|
114 |
+
| 2.7893 | 2.22 | 528000 | 2.6422 |
|
115 |
+
| 2.7893 | 2.26 | 536000 | 2.6410 |
|
116 |
+
| 2.7889 | 2.29 | 544000 | 2.6337 |
|
117 |
+
| 2.7889 | 2.32 | 552000 | 2.6280 |
|
118 |
+
| 2.791 | 2.36 | 560000 | 2.6364 |
|
119 |
+
| 2.791 | 2.39 | 568000 | 2.6341 |
|
120 |
+
| 2.7883 | 2.43 | 576000 | 2.6317 |
|
121 |
+
| 2.7883 | 2.46 | 584000 | 2.6278 |
|
122 |
+
| 2.7889 | 2.49 | 592000 | 2.6357 |
|
123 |
+
| 2.7889 | 2.53 | 600000 | 2.6341 |
|
124 |
+
| 2.7838 | 2.56 | 608000 | 2.6333 |
|
125 |
+
| 2.7838 | 2.59 | 616000 | 2.6382 |
|
126 |
+
| 2.7873 | 2.63 | 624000 | 2.6275 |
|
127 |
+
| 2.7873 | 2.66 | 632000 | 2.6260 |
|
128 |
+
| 2.7813 | 2.69 | 640000 | 2.6373 |
|
129 |
+
| 2.7813 | 2.73 | 648000 | 2.6349 |
|
130 |
+
| 2.7858 | 2.76 | 656000 | 2.6223 |
|
131 |
+
| 2.7858 | 2.8 | 664000 | 2.6276 |
|
132 |
+
| 2.7895 | 2.83 | 672000 | 2.6355 |
|
133 |
+
| 2.7895 | 2.86 | 680000 | 2.6270 |
|
134 |
+
| 2.7873 | 2.9 | 688000 | 2.6244 |
|
135 |
+
| 2.7873 | 2.93 | 696000 | 2.6397 |
|
136 |
+
| 2.7866 | 2.96 | 704000 | 2.6303 |
|
137 |
+
| 2.7866 | 3.0 | 712000 | 2.6167 |
|
138 |
+
| 2.7865 | 3.03 | 720000 | 2.6265 |
|
139 |
+
| 2.7865 | 3.07 | 728000 | 2.6403 |
|
140 |
+
| 2.7716 | 3.1 | 736000 | 2.6247 |
|
141 |
+
| 2.7716 | 3.13 | 744000 | 2.6255 |
|
142 |
+
| 2.779 | 3.17 | 752000 | 2.6316 |
|
143 |
+
| 2.779 | 3.2 | 760000 | 2.6270 |
|
144 |
+
| 2.7811 | 3.23 | 768000 | 2.6268 |
|
145 |
+
| 2.7811 | 3.27 | 776000 | 2.6147 |
|
146 |
+
| 2.7797 | 3.3 | 784000 | 2.6271 |
|
147 |
+
| 2.7797 | 3.33 | 792000 | 2.6243 |
|
148 |
+
| 2.7798 | 3.37 | 800000 | 2.6240 |
|
149 |
+
| 2.7798 | 3.4 | 808000 | 2.6225 |
|
150 |
+
| 2.7774 | 3.44 | 816000 | 2.6232 |
|
151 |
+
| 2.7774 | 3.47 | 824000 | 2.6247 |
|
152 |
+
| 2.7744 | 3.5 | 832000 | 2.6270 |
|
153 |
+
| 2.7744 | 3.54 | 840000 | 2.6175 |
|
154 |
+
| 2.7786 | 3.57 | 848000 | 2.6264 |
|
155 |
+
| 2.7786 | 3.6 | 856000 | 2.6192 |
|
156 |
+
| 2.7829 | 3.64 | 864000 | 2.6278 |
|
157 |
+
| 2.7829 | 3.67 | 872000 | 2.6237 |
|
158 |
+
| 2.776 | 3.71 | 880000 | 2.6202 |
|
159 |
+
| 2.776 | 3.74 | 888000 | 2.6216 |
|
160 |
+
| 2.7797 | 3.77 | 896000 | 2.6174 |
|
161 |
+
| 2.7797 | 3.81 | 904000 | 2.6239 |
|
162 |
+
| 2.7744 | 3.84 | 912000 | 2.6163 |
|
163 |
+
| 2.7744 | 3.87 | 920000 | 2.6198 |
|
164 |
+
| 2.7713 | 3.91 | 928000 | 2.6236 |
|
165 |
+
| 2.7713 | 3.94 | 936000 | 2.6226 |
|
166 |
+
| 2.7853 | 3.97 | 944000 | 2.6175 |
|
167 |
+
| 2.7853 | 4.01 | 952000 | 2.6189 |
|
168 |
+
| 2.7766 | 4.04 | 960000 | 2.6192 |
|
169 |
+
| 2.7766 | 4.08 | 968000 | 2.6318 |
|
170 |
+
| 2.7851 | 4.11 | 976000 | 2.6210 |
|
171 |
+
| 2.7851 | 4.14 | 984000 | 2.6172 |
|
172 |
+
| 2.7804 | 4.18 | 992000 | 2.6200 |
|
173 |
+
| 2.7804 | 4.21 | 1000000 | 2.6157 |
|
174 |
+
| 2.773 | 4.24 | 1008000 | 2.6098 |
|
175 |
+
| 2.773 | 4.28 | 1016000 | 2.6156 |
|
176 |
+
| 2.7818 | 4.31 | 1024000 | 2.6149 |
|
177 |
+
| 2.7818 | 4.35 | 1032000 | 2.6121 |
|
178 |
+
| 2.7736 | 4.38 | 1040000 | 2.6150 |
|
179 |
+
| 2.7736 | 4.41 | 1048000 | 2.6156 |
|
180 |
+
| 2.7761 | 4.45 | 1056000 | 2.6171 |
|
181 |
+
| 2.7761 | 4.48 | 1064000 | 2.6124 |
|
182 |
+
| 2.7789 | 4.51 | 1072000 | 2.6277 |
|
183 |
+
| 2.7789 | 4.55 | 1080000 | 2.6138 |
|
184 |
+
| 2.7744 | 4.58 | 1088000 | 2.6081 |
|
185 |
+
| 2.7744 | 4.61 | 1096000 | 2.6201 |
|
186 |
+
| 2.77 | 4.65 | 1104000 | 2.6171 |
|
187 |
+
| 2.77 | 4.68 | 1112000 | 2.6099 |
|
188 |
+
| 2.772 | 4.72 | 1120000 | 2.6141 |
|
189 |
+
| 2.772 | 4.75 | 1128000 | 2.6174 |
|
190 |
+
| 2.7709 | 4.78 | 1136000 | 2.6200 |
|
191 |
+
| 2.7709 | 4.82 | 1144000 | 2.6150 |
|
192 |
+
| 2.7724 | 4.85 | 1152000 | 2.6042 |
|
193 |
+
| 2.7724 | 4.88 | 1160000 | 2.6158 |
|
194 |
+
| 2.7763 | 4.92 | 1168000 | 2.6167 |
|
195 |
+
| 2.7763 | 4.95 | 1176000 | 2.6174 |
|
196 |
+
| 2.7736 | 4.99 | 1184000 | 2.6099 |
|
197 |
+
| 2.7736 | 5.02 | 1192000 | 2.6076 |
|
198 |
+
| 2.7692 | 5.05 | 1200000 | 2.6088 |
|
199 |
+
| 2.7692 | 5.09 | 1208000 | 2.6174 |
|
200 |
+
| 2.7794 | 5.12 | 1216000 | 2.6041 |
|
201 |
+
| 2.7794 | 5.15 | 1224000 | 2.6051 |
|
202 |
+
| 2.7709 | 5.19 | 1232000 | 2.6093 |
|
203 |
+
| 2.7709 | 5.22 | 1240000 | 2.6062 |
|
204 |
+
| 2.7727 | 5.25 | 1248000 | 2.6052 |
|
205 |
+
| 2.7727 | 5.29 | 1256000 | 2.6126 |
|
206 |
+
| 2.7686 | 5.32 | 1264000 | 2.6099 |
|
207 |
+
| 2.7686 | 5.36 | 1272000 | 2.6192 |
|
208 |
+
| 2.7668 | 5.39 | 1280000 | 2.6166 |
|
209 |
+
| 2.7668 | 5.42 | 1288000 | 2.6042 |
|
210 |
+
| 2.7777 | 5.46 | 1296000 | 2.6038 |
|
211 |
+
| 2.7777 | 5.49 | 1304000 | 2.6119 |
|
212 |
+
| 2.7737 | 5.52 | 1312000 | 2.6155 |
|
213 |
+
| 2.7737 | 5.56 | 1320000 | 2.6236 |
|
214 |
+
| 2.7757 | 5.59 | 1328000 | 2.6124 |
|
215 |
+
| 2.7757 | 5.63 | 1336000 | 2.5993 |
|
216 |
+
| 2.7757 | 5.66 | 1344000 | 2.6132 |
|
217 |
+
| 2.7757 | 5.69 | 1352000 | 2.6063 |
|
218 |
+
| 2.7748 | 5.73 | 1360000 | 2.6130 |
|
219 |
+
| 2.7748 | 5.76 | 1368000 | 2.6100 |
|
220 |
+
| 2.769 | 5.79 | 1376000 | 2.6024 |
|
221 |
+
| 2.769 | 5.83 | 1384000 | 2.6062 |
|
222 |
+
| 2.7713 | 5.86 | 1392000 | 2.6138 |
|
223 |
+
| 2.7713 | 5.89 | 1400000 | 2.6025 |
|
224 |
+
| 2.7766 | 5.93 | 1408000 | 2.6088 |
|
225 |
+
| 2.7766 | 5.96 | 1416000 | 2.6138 |
|
226 |
+
| 2.7727 | 6.0 | 1424000 | 2.6048 |
|
227 |
+
| 2.7727 | 6.03 | 1432000 | 2.6068 |
|
228 |
+
| 2.7737 | 6.06 | 1440000 | 2.6144 |
|
229 |
+
| 2.7737 | 6.1 | 1448000 | 2.6051 |
|
230 |
+
| 2.778 | 6.13 | 1456000 | 2.6158 |
|
231 |
+
| 2.778 | 6.16 | 1464000 | 2.6152 |
|
232 |
+
| 2.7767 | 6.2 | 1472000 | 2.6019 |
|
233 |
+
| 2.7767 | 6.23 | 1480000 | 2.6117 |
|
234 |
+
| 2.7706 | 6.27 | 1488000 | 2.6065 |
|
235 |
+
| 2.7706 | 6.3 | 1496000 | 2.6122 |
|
236 |
+
| 2.7775 | 6.33 | 1504000 | 2.6100 |
|
237 |
+
| 2.7775 | 6.37 | 1512000 | 2.6100 |
|
238 |
+
| 2.7753 | 6.4 | 1520000 | 2.6051 |
|
239 |
+
| 2.7753 | 6.43 | 1528000 | 2.6037 |
|
240 |
+
| 2.7691 | 6.47 | 1536000 | 2.6037 |
|
241 |
+
| 2.7691 | 6.5 | 1544000 | 2.5992 |
|
242 |
+
| 2.758 | 6.53 | 1552000 | 2.6080 |
|
243 |
+
| 2.758 | 6.57 | 1560000 | 2.6139 |
|
244 |
+
| 2.7722 | 6.6 | 1568000 | 2.6000 |
|
245 |
+
| 2.7722 | 6.64 | 1576000 | 2.6107 |
|
246 |
+
| 2.7737 | 6.67 | 1584000 | 2.6057 |
|
247 |
+
| 2.7737 | 6.7 | 1592000 | 2.6063 |
|
248 |
+
| 2.7722 | 6.74 | 1600000 | 2.6028 |
|
249 |
+
| 2.7722 | 6.77 | 1608000 | 2.5995 |
|
250 |
+
| 2.7659 | 6.8 | 1616000 | 2.6042 |
|
251 |
+
| 2.7659 | 6.84 | 1624000 | 2.6013 |
|
252 |
+
| 2.7769 | 6.87 | 1632000 | 2.6028 |
|
253 |
+
| 2.7769 | 6.91 | 1640000 | 2.6080 |
|
254 |
+
| 2.7732 | 6.94 | 1648000 | 2.5994 |
|
255 |
+
| 2.7732 | 6.97 | 1656000 | 2.6063 |
|
256 |
+
| 2.7708 | 7.01 | 1664000 | 2.6120 |
|
257 |
+
| 2.7708 | 7.04 | 1672000 | 2.6023 |
|
258 |
+
| 2.7614 | 7.07 | 1680000 | 2.6091 |
|
259 |
+
| 2.7614 | 7.11 | 1688000 | 2.6003 |
|
260 |
+
| 2.7655 | 7.14 | 1696000 | 2.6016 |
|
261 |
+
| 2.7655 | 7.17 | 1704000 | 2.6058 |
|
262 |
+
| 2.7747 | 7.21 | 1712000 | 2.6045 |
|
263 |
+
| 2.7747 | 7.24 | 1720000 | 2.6097 |
|
264 |
+
| 2.7685 | 7.28 | 1728000 | 2.6068 |
|
265 |
+
| 2.7685 | 7.31 | 1736000 | 2.6037 |
|
266 |
+
| 2.7736 | 7.34 | 1744000 | 2.6125 |
|
267 |
+
| 2.7736 | 7.38 | 1752000 | 2.6113 |
|
268 |
+
| 2.7666 | 7.41 | 1760000 | 2.5972 |
|
269 |
+
| 2.7666 | 7.44 | 1768000 | 2.6081 |
|
270 |
+
| 2.7658 | 7.48 | 1776000 | 2.6090 |
|
271 |
+
| 2.7658 | 7.51 | 1784000 | 2.6126 |
|
272 |
+
| 2.7802 | 7.55 | 1792000 | 2.6021 |
|
273 |
+
| 2.7802 | 7.58 | 1800000 | 2.6087 |
|
274 |
+
| 2.7749 | 7.61 | 1808000 | 2.5986 |
|
275 |
+
| 2.7749 | 7.65 | 1816000 | 2.6002 |
|
276 |
+
| 2.7689 | 7.68 | 1824000 | 2.6023 |
|
277 |
+
| 2.7689 | 7.71 | 1832000 | 2.5969 |
|
278 |
+
| 2.7699 | 7.75 | 1840000 | 2.5975 |
|
279 |
+
| 2.7699 | 7.78 | 1848000 | 2.6070 |
|
280 |
+
| 2.7715 | 7.81 | 1856000 | 2.6035 |
|
281 |
+
| 2.7715 | 7.85 | 1864000 | 2.6049 |
|
282 |
+
| 2.7653 | 7.88 | 1872000 | 2.6129 |
|
283 |
+
| 2.7653 | 7.92 | 1880000 | 2.6027 |
|
284 |
+
| 2.7729 | 7.95 | 1888000 | 2.6000 |
|
285 |
+
| 2.7729 | 7.98 | 1896000 | 2.6138 |
|
286 |
+
| 2.7693 | 8.02 | 1904000 | 2.6052 |
|
287 |
+
| 2.7693 | 8.05 | 1912000 | 2.6060 |
|
288 |
+
| 2.7585 | 8.08 | 1920000 | 2.6065 |
|
289 |
+
| 2.7585 | 8.12 | 1928000 | 2.6105 |
|
290 |
+
| 2.7652 | 8.15 | 1936000 | 2.6075 |
|
291 |
+
| 2.7652 | 8.19 | 1944000 | 2.6076 |
|
292 |
+
| 2.7508 | 8.22 | 1952000 | 2.6083 |
|
293 |
+
| 2.7508 | 8.25 | 1960000 | 2.6112 |
|
294 |
+
| 2.7678 | 8.29 | 1968000 | 2.6019 |
|
295 |
+
| 2.7678 | 8.32 | 1976000 | 2.6029 |
|
296 |
+
| 2.7653 | 8.35 | 1984000 | 2.6087 |
|
297 |
+
| 2.7653 | 8.39 | 1992000 | 2.6064 |
|
298 |
+
| 2.7661 | 8.42 | 2000000 | 2.6031 |
|
299 |
+
| 2.7661 | 8.45 | 2008000 | 2.6051 |
|
300 |
+
| 2.7742 | 8.49 | 2016000 | 2.6091 |
|
301 |
+
| 2.7742 | 8.52 | 2024000 | 2.5978 |
|
302 |
+
| 2.7748 | 8.56 | 2032000 | 2.6131 |
|
303 |
+
| 2.7748 | 8.59 | 2040000 | 2.6030 |
|
304 |
+
| 2.7706 | 8.62 | 2048000 | 2.6036 |
|
305 |
+
| 2.7706 | 8.66 | 2056000 | 2.5998 |
|
306 |
+
| 2.769 | 8.69 | 2064000 | 2.6013 |
|
307 |
+
| 2.769 | 8.72 | 2072000 | 2.6000 |
|
308 |
+
| 2.7733 | 8.76 | 2080000 | 2.6062 |
|
309 |
+
| 2.7733 | 8.79 | 2088000 | 2.6057 |
|
310 |
+
| 2.7714 | 8.83 | 2096000 | 2.6021 |
|
311 |
+
| 2.7714 | 8.86 | 2104000 | 2.6028 |
|
312 |
+
| 2.7754 | 8.89 | 2112000 | 2.5964 |
|
313 |
+
| 2.7754 | 8.93 | 2120000 | 2.6015 |
|
314 |
+
| 2.7683 | 8.96 | 2128000 | 2.6060 |
|
315 |
+
| 2.7683 | 8.99 | 2136000 | 2.6082 |
|
316 |
+
| 2.7758 | 9.03 | 2144000 | 2.6130 |
|
317 |
+
| 2.7758 | 9.06 | 2152000 | 2.6071 |
|
318 |
+
| 2.768 | 9.09 | 2160000 | 2.6141 |
|
319 |
+
| 2.768 | 9.13 | 2168000 | 2.6003 |
|
320 |
+
| 2.7653 | 9.16 | 2176000 | 2.5987 |
|
321 |
+
| 2.7653 | 9.2 | 2184000 | 2.6066 |
|
322 |
+
| 2.7621 | 9.23 | 2192000 | 2.6041 |
|
323 |
+
| 2.7621 | 9.26 | 2200000 | 2.6060 |
|
324 |
+
| 2.7712 | 9.3 | 2208000 | 2.6144 |
|
325 |
+
| 2.7712 | 9.33 | 2216000 | 2.5990 |
|
326 |
+
| 2.7718 | 9.36 | 2224000 | 2.6039 |
|
327 |
+
| 2.7718 | 9.4 | 2232000 | 2.5931 |
|
328 |
+
| 2.774 | 9.43 | 2240000 | 2.6129 |
|
329 |
+
| 2.774 | 9.47 | 2248000 | 2.6095 |
|
330 |
+
| 2.765 | 9.5 | 2256000 | 2.5932 |
|
331 |
+
| 2.765 | 9.53 | 2264000 | 2.6010 |
|
332 |
+
| 2.7754 | 9.57 | 2272000 | 2.6078 |
|
333 |
+
| 2.7754 | 9.6 | 2280000 | 2.5981 |
|
334 |
+
| 2.771 | 9.63 | 2288000 | 2.6052 |
|
335 |
+
| 2.771 | 9.67 | 2296000 | 2.5944 |
|
336 |
+
| 2.7757 | 9.7 | 2304000 | 2.6045 |
|
337 |
+
| 2.7757 | 9.73 | 2312000 | 2.5971 |
|
338 |
+
| 2.7685 | 9.77 | 2320000 | 2.6101 |
|
339 |
+
| 2.7685 | 9.8 | 2328000 | 2.5964 |
|
340 |
+
| 2.7708 | 9.84 | 2336000 | 2.5974 |
|
341 |
+
| 2.7708 | 9.87 | 2344000 | 2.5953 |
|
342 |
+
| 2.7695 | 9.9 | 2352000 | 2.5981 |
|
343 |
+
| 2.7695 | 9.94 | 2360000 | 2.6095 |
|
344 |
+
| 2.7702 | 9.97 | 2368000 | 2.6042 |
|
345 |
+
| 2.7702 | 10.0 | 2376000 | 2.6095 |
|
346 |
+
| 2.7614 | 10.04 | 2384000 | 2.6007 |
|
347 |
+
| 2.7614 | 10.07 | 2392000 | 2.6017 |
|
348 |
+
| 2.7708 | 10.11 | 2400000 | 2.6114 |
|
349 |
+
|
350 |
+
|
351 |
+
### Framework versions
|
352 |
+
|
353 |
+
- Transformers 4.35.0.dev0
|
354 |
+
- Pytorch 2.0.1+cu117
|
355 |
+
- Datasets 2.14.5
|
356 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d97a49c06d3baf8b0261ff13142c75a6bcfb2c05ee508cec74ecf14f0af27704
|
3 |
size 498859189
|