--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: prm_version3_full_hf results: [] --- # prm_version3_full_hf This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the prm_conversations_prm_version3_math+webinstructsub-mcq+webinstructsub-oe+apps+gsm_mix_ref_hf dataset. It achieves the following results on the evaluation set: - Loss: 0.1166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.1961 | 0.0461 | 500 | 0.2069 | | 0.192 | 0.0921 | 1000 | 0.1930 | | 0.1963 | 0.1382 | 1500 | 0.1833 | | 0.1701 | 0.1843 | 2000 | 0.1748 | | 0.1647 | 0.2303 | 2500 | 0.1687 | | 0.1507 | 0.2764 | 3000 | 0.1630 | | 0.1421 | 0.3225 | 3500 | 0.1579 | | 0.1403 | 0.3685 | 4000 | 0.1528 | | 0.1557 | 0.4146 | 4500 | 0.1485 | | 0.1536 | 0.4607 | 5000 | 0.1441 | | 0.1344 | 0.5067 | 5500 | 0.1399 | | 0.1195 | 0.5528 | 6000 | 0.1355 | | 0.1209 | 0.5989 | 6500 | 0.1316 | | 0.137 | 0.6450 | 7000 | 0.1284 | | 0.117 | 0.6910 | 7500 | 0.1253 | | 0.116 | 0.7371 | 8000 | 0.1228 | | 0.1259 | 0.7832 | 8500 | 0.1206 | | 0.1147 | 0.8292 | 9000 | 0.1187 | | 0.1175 | 0.8753 | 9500 | 0.1175 | | 0.1117 | 0.9214 | 10000 | 0.1168 | | 0.1133 | 0.9674 | 10500 | 0.1166 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3