Upload notebook for model generation
Browse files
Generate_tflite_for_whisper_base_with_transcribe_and_translate_signatures.ipynb
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "c5g9NTF_Ixad"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"##Install Tranformers and datasets"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "w4VPaSlnHUvT"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"!pip install transformers==4.33.0\n",
|
21 |
+
"!pip install tensorflow==2.14.0"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"metadata": {
|
28 |
+
"id": "ClniiYCWHK4b"
|
29 |
+
},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"! pip install datasets"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"metadata": {
|
38 |
+
"id": "pljpioLsJOtb"
|
39 |
+
},
|
40 |
+
"source": [
|
41 |
+
"##Load pre trained TF Whisper Base model"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"metadata": {
|
48 |
+
"id": "BJNOxn5vHaGi"
|
49 |
+
},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"import tensorflow as tf\n",
|
53 |
+
"from transformers import TFWhisperModel, WhisperFeatureExtractor\n",
|
54 |
+
"from datasets import load_dataset\n",
|
55 |
+
"\n",
|
56 |
+
"model = TFWhisperModel.from_pretrained(\"openai/whisper-base\")\n",
|
57 |
+
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-base\")\n",
|
58 |
+
"\n",
|
59 |
+
"ds = load_dataset(\"google/fleurs\", \"fr_fr\", split=\"test\")\n",
|
60 |
+
"inputs = feature_extractor(\n",
|
61 |
+
" ds[0][\"audio\"][\"array\"], sampling_rate=ds[0][\"audio\"][\"sampling_rate\"], return_tensors=\"tf\"\n",
|
62 |
+
")\n",
|
63 |
+
"input_features = inputs.input_features\n",
|
64 |
+
"print(input_features)\n",
|
65 |
+
"decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id\n",
|
66 |
+
"last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state\n",
|
67 |
+
"list(last_hidden_state.shape)"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {
|
73 |
+
"id": "W9XP25uhJl44"
|
74 |
+
},
|
75 |
+
"source": [
|
76 |
+
"##Generate Saved model"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
82 |
+
"metadata": {
|
83 |
+
"id": "vpYwMmgyHf0B"
|
84 |
+
},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"model.save('/content/tf_whisper_saved')"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"metadata": {
|
93 |
+
"id": "TY_79jFEJYyJ"
|
94 |
+
},
|
95 |
+
"source": [
|
96 |
+
"##Convert saved model to TFLite model"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {
|
103 |
+
"id": "owez2zvzHl-p"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"import tensorflow as tf\n",
|
108 |
+
"\n",
|
109 |
+
"saved_model_dir = '/content/tf_whisper_saved'\n",
|
110 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
111 |
+
"\n",
|
112 |
+
"# Convert the model\n",
|
113 |
+
"converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\n",
|
114 |
+
"converter.target_spec.supported_ops = [\n",
|
115 |
+
" tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n",
|
116 |
+
" tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n",
|
117 |
+
"]\n",
|
118 |
+
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
|
119 |
+
"tflite_model = converter.convert()\n",
|
120 |
+
"\n",
|
121 |
+
"# Save the model\n",
|
122 |
+
"with open(tflite_model_path, 'wb') as f:\n",
|
123 |
+
" f.write(tflite_model)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"metadata": {
|
130 |
+
"id": "tFkzUrjIbNcH"
|
131 |
+
},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"%ls -la"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "markdown",
|
139 |
+
"metadata": {
|
140 |
+
"id": "fpEnWZt7iQJK"
|
141 |
+
},
|
142 |
+
"source": [
|
143 |
+
"##Evaluate TF model"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"metadata": {
|
150 |
+
"id": "-RuFFohHg2ho"
|
151 |
+
},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"import tensorflow as tf\n",
|
155 |
+
"from transformers import WhisperProcessor, TFWhisperForConditionalGeneration\n",
|
156 |
+
"from datasets import load_dataset\n",
|
157 |
+
"\n",
|
158 |
+
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-base\")\n",
|
159 |
+
"model = TFWhisperForConditionalGeneration.from_pretrained(\"openai/whisper-base\")\n",
|
160 |
+
"\n",
|
161 |
+
"ds = load_dataset(\"google/fleurs\", \"fr_fr\", split=\"test\")\n",
|
162 |
+
"\n",
|
163 |
+
"inputs = processor(ds[0][\"audio\"][\"array\"], return_tensors=\"tf\")\n",
|
164 |
+
"input_features = inputs.input_features\n",
|
165 |
+
"\n",
|
166 |
+
"generated_ids = model.generate(input_features)\n",
|
167 |
+
"\n",
|
168 |
+
"transcription = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
169 |
+
"transcription"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "markdown",
|
174 |
+
"metadata": {
|
175 |
+
"id": "U-eKuy_cG4u0"
|
176 |
+
},
|
177 |
+
"source": [
|
178 |
+
"## Evaluate TF Lite model (naive)\n",
|
179 |
+
"\n",
|
180 |
+
"We can load the model as defined above... but the model is useless on its own. Generation is much more complex that a model forward pass."
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": null,
|
186 |
+
"metadata": {
|
187 |
+
"id": "wnfHirgyG0W4"
|
188 |
+
},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
192 |
+
"interpreter = tf.lite.Interpreter(tflite_model_path)"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "markdown",
|
197 |
+
"metadata": {
|
198 |
+
"id": "a8VJQuHJKzl4"
|
199 |
+
},
|
200 |
+
"source": [
|
201 |
+
"## Create generation-enabled TF Lite model\n",
|
202 |
+
"\n",
|
203 |
+
"The solution consists in defining a model whose serving function is the generation call. Here's an example of how to do it:"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"metadata": {
|
209 |
+
"id": "JmIgqWVgVBZN"
|
210 |
+
},
|
211 |
+
"source": [
|
212 |
+
"Now with monkey-patch for fixing NaN errors with -inf values"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": null,
|
218 |
+
"metadata": {
|
219 |
+
"id": "e5P8s66yU7Kv"
|
220 |
+
},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"import tensorflow as tf\n",
|
224 |
+
"import numpy as np\n",
|
225 |
+
"from transformers import TFForceTokensLogitsProcessor, TFLogitsProcessor\n",
|
226 |
+
"from typing import List, Optional, Union, Any\n",
|
227 |
+
"\n",
|
228 |
+
"# Patching methods of class TFForceTokensLogitsProcessor(TFLogitsProcessor):\n",
|
229 |
+
"\n",
|
230 |
+
"def my__init__(self, force_token_map: List[List[int]]):\n",
|
231 |
+
" force_token_map = dict(force_token_map)\n",
|
232 |
+
" # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the\n",
|
233 |
+
" # index of the array corresponds to the index of the token to be forced, for XLA compatibility.\n",
|
234 |
+
" # Indexes without forced tokens will have an negative value.\n",
|
235 |
+
" force_token_array = np.ones((max(force_token_map.keys()) + 1), dtype=np.int32) * -1\n",
|
236 |
+
" for index, token in force_token_map.items():\n",
|
237 |
+
" if token is not None:\n",
|
238 |
+
" force_token_array[index] = token\n",
|
239 |
+
" self.force_token_array = tf.convert_to_tensor(force_token_array, dtype=tf.int32)\n",
|
240 |
+
"\n",
|
241 |
+
"def my__call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:\n",
|
242 |
+
" def _force_token(generation_idx):\n",
|
243 |
+
" batch_size = scores.shape[0]\n",
|
244 |
+
" current_token = self.force_token_array[generation_idx]\n",
|
245 |
+
"\n",
|
246 |
+
" # Original code below generates NaN values when the model is exported to tflite\n",
|
247 |
+
" # it just needs to be a negative number so that the forced token's value of 0 is the largest\n",
|
248 |
+
" # so it will get chosen\n",
|
249 |
+
" #new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float(\"inf\")\n",
|
250 |
+
" new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float(1)\n",
|
251 |
+
" indices = tf.stack((tf.range(batch_size), tf.tile([current_token], [batch_size])), axis=1)\n",
|
252 |
+
" updates = tf.zeros((batch_size,), dtype=scores.dtype)\n",
|
253 |
+
" new_scores = tf.tensor_scatter_nd_update(new_scores, indices, updates)\n",
|
254 |
+
" return new_scores\n",
|
255 |
+
"\n",
|
256 |
+
" scores = tf.cond(\n",
|
257 |
+
" tf.greater_equal(cur_len, tf.shape(self.force_token_array)[0]),\n",
|
258 |
+
" # If the current length is geq than the length of force_token_array, the processor does nothing.\n",
|
259 |
+
" lambda: tf.identity(scores),\n",
|
260 |
+
" # Otherwise, it may force a certain token.\n",
|
261 |
+
" lambda: tf.cond(\n",
|
262 |
+
" tf.greater_equal(self.force_token_array[cur_len], 0),\n",
|
263 |
+
" # Only valid (positive) tokens are forced\n",
|
264 |
+
" lambda: _force_token(cur_len),\n",
|
265 |
+
" # Otherwise, the processor does nothing.\n",
|
266 |
+
" lambda: scores,\n",
|
267 |
+
" ),\n",
|
268 |
+
" )\n",
|
269 |
+
" return scores\n",
|
270 |
+
"\n",
|
271 |
+
"TFForceTokensLogitsProcessor.__init__ = my__init__\n",
|
272 |
+
"TFForceTokensLogitsProcessor.__call__ = my__call__"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {
|
279 |
+
"id": "rIkUCdiyU7ZT"
|
280 |
+
},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"import tensorflow as tf\n",
|
284 |
+
"\n",
|
285 |
+
"class GenerateModel(tf.Module):\n",
|
286 |
+
" def __init__(self, model):\n",
|
287 |
+
" super(GenerateModel, self).__init__()\n",
|
288 |
+
" self.model = model\n",
|
289 |
+
"\n",
|
290 |
+
" @tf.function(\n",
|
291 |
+
" input_signature=[\n",
|
292 |
+
" tf.TensorSpec((1, 80, 3000), tf.float32, name=\"input_features\"),\n",
|
293 |
+
" ],\n",
|
294 |
+
" )\n",
|
295 |
+
" def transcribe(self, input_features):\n",
|
296 |
+
" outputs = self.model.generate(\n",
|
297 |
+
" input_features,\n",
|
298 |
+
" max_new_tokens=450, # change as needed\n",
|
299 |
+
" return_dict_in_generate=True,\n",
|
300 |
+
" forced_decoder_ids=[[2, 50359], [3, 50363]], # forced to transcribe any language with no timestamps\n",
|
301 |
+
" )\n",
|
302 |
+
" return {\"sequences\": outputs[\"sequences\"]}\n",
|
303 |
+
"\n",
|
304 |
+
" @tf.function(\n",
|
305 |
+
" input_signature=[\n",
|
306 |
+
" tf.TensorSpec((1, 80, 3000), tf.float32, name=\"input_features\"),\n",
|
307 |
+
" ],\n",
|
308 |
+
" )\n",
|
309 |
+
" def translate(self, input_features):\n",
|
310 |
+
" outputs = self.model.generate(\n",
|
311 |
+
" input_features,\n",
|
312 |
+
" max_new_tokens=450, # change as needed\n",
|
313 |
+
" return_dict_in_generate=True,\n",
|
314 |
+
" forced_decoder_ids=[[2, 50358], [3, 50363]], # different forced_decoder_ids\n",
|
315 |
+
" )\n",
|
316 |
+
" return {\"sequences\": outputs[\"sequences\"]}\n",
|
317 |
+
"\n",
|
318 |
+
"# Assuming `model` is already defined and loaded\n",
|
319 |
+
"saved_model_dir = '/content/tf_whisper_saved'\n",
|
320 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
321 |
+
"\n",
|
322 |
+
"generate_model = GenerateModel(model=model)\n",
|
323 |
+
"tf.saved_model.save(generate_model, saved_model_dir, signatures={\n",
|
324 |
+
" \"serving_default\": generate_model.transcribe,\n",
|
325 |
+
" \"serving_transcribe\": generate_model.transcribe,\n",
|
326 |
+
" \"serving_translate\": generate_model.translate\n",
|
327 |
+
"\n",
|
328 |
+
"})\n",
|
329 |
+
"\n",
|
330 |
+
"# Convert the model\n",
|
331 |
+
"converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\n",
|
332 |
+
"converter.target_spec.supported_ops = [\n",
|
333 |
+
" tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n",
|
334 |
+
" tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n",
|
335 |
+
"]\n",
|
336 |
+
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
|
337 |
+
"tflite_model = converter.convert()\n",
|
338 |
+
"\n",
|
339 |
+
"# Save the model\n",
|
340 |
+
"with open(tflite_model_path, 'wb') as f:\n",
|
341 |
+
" f.write(tflite_model)"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": null,
|
347 |
+
"metadata": {
|
348 |
+
"id": "u9MustgMU7oI"
|
349 |
+
},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"# loaded model... now with generate!\n",
|
353 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
354 |
+
"interpreter = tf.lite.Interpreter(tflite_model_path)\n",
|
355 |
+
"\n",
|
356 |
+
"tflite_generate = interpreter.get_signature_runner('serving_default')\n",
|
357 |
+
"generated_ids = tflite_generate(input_features=input_features)[\"sequences\"]\n",
|
358 |
+
"transcription = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
359 |
+
"transcription\n",
|
360 |
+
"\n",
|
361 |
+
"\n"
|
362 |
+
]
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"metadata": {
|
366 |
+
"colab": {
|
367 |
+
"machine_shape": "hm",
|
368 |
+
"provenance": []
|
369 |
+
},
|
370 |
+
"kernelspec": {
|
371 |
+
"display_name": "Python 3",
|
372 |
+
"name": "python3"
|
373 |
+
},
|
374 |
+
"language_info": {
|
375 |
+
"name": "python"
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"nbformat": 4,
|
379 |
+
"nbformat_minor": 0
|
380 |
+
}
|