File size: 2,383 Bytes
ba6bd21 6df8eff ba6bd21 6df8eff aed1300 6df8eff 4898ef8 6df8eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
language:
- ru
license: apache-2.0
---
# Model MedRuRobertaLarge
# Model Description
This model is fine-tuned version of [ruRoberta-large](https://huggingface.co/sberbank-ai/ruRoberta-large).
The code for the fine-tuned process can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_ru_roberta_large/fine_tune_ru_roberta_large.py).
The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian.
The collected dataset can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv).
This model was created as part of a master's project to develop a method for correcting typos
in medical histories using BERT models as a ranking of candidates.
The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker).
# How to Get Started With the Model
You can use the model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedRuRobertaLarge')
>>> pipeline("У пациента <mask> боль в грудине.")
[{'score': 0.2467374950647354,
'token': 9233,
'token_str': ' сильный',
'sequence': 'У пациента сильный боль в грудине.'},
{'score': 0.16476310789585114,
'token': 27876,
'token_str': ' постоянный',
'sequence': 'У пациента постоянный боль в грудине.'},
{'score': 0.07211139053106308,
'token': 19551,
'token_str': ' острый',
'sequence': 'У пациента острый боль в грудине.'},
{'score': 0.0616639070212841,
'token': 18840,
'token_str': ' сильная',
'sequence': 'У пациента сильная боль в грудине.'},
{'score': 0.029712719842791557,
'token': 40176,
'token_str': ' острая',
'sequence': 'У пациента острая боль в грудине.'}]
```
Or you can load the model and tokenizer and do what you need to do:
```python
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedRuRobertaLarge")
>>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedRuRobertaLarge")
``` |