--- license: llama3 language: - de - en library_name: transformers --- # Llama3_DiscoLeo_Instruct_8B_v0.1_4bit_awq_glc This model is a 4 bit quantization of [DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) created using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) with a custom bilingual calibration dataset and `quant_config = {"zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM"}`. Copy of original model card: # Llama3-DiscoLeo-Instruct 8B (version 0.1) ## Thanks and Accreditation [DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729) is the result of a joint effort between [DiscoResearch](https://huggingface.co/DiscoResearch) and [Occiglot](https://huggingface.co/occiglot) with support from the [DFKI](https://www.dfki.de/web/) (German Research Center for Artificial Intelligence) and [hessian.Ai](https://hessian.ai). Occiglot kindly handled data preprocessing, filtering, and deduplication as part of their latest [dataset release](https://huggingface.co/datasets/occiglot/occiglot-fineweb-v0.5), as well as sharing their compute allocation at hessian.Ai's 42 Supercomputer. ## Model Overview Llama3_DiscoLeo_Instruct_8B_v0 is an instruction tuned version of our [Llama3-German-8B](https://huggingface.co/DiscoResearch/Llama3_German_8B). The base model was derived from [Meta's Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) through continuous pretraining on 65 billion high-quality German tokens, similar to previous [LeoLM](https://huggingface.co/LeoLM) or [Occiglot](https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01) models. We finetuned this checkpoint on the German Instruction dataset from DiscoResearch created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). ## How to use Llama3_DiscoLeo_Instruct_8B_v0.1 uses the [Llama-3 chat template](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models), which can be easily used with [transformer's chat templating](https://huggingface.co/docs/transformers/main/en/chat_templating). See [below](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1#usage-example) for a usage example. ## Model Training and Hyperparameters The model was full-fintuned with axolotl on the [hessian.Ai 42](hessian.ai) with 8192 context-length, learning rate 2e-5 and batch size of 16. ## Evaluation and Results We evaluated the model using a suite of common English Benchmarks and their German counterparts with [GermanBench](https://github.com/bjoernpl/GermanBenchmark). In the below image and corresponding table, you can see the benchmark scores for the different instruct models compared to Metas instruct version. All checkpoints are available in this [collection](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729). ![instruct scores](instruct_model_benchmarks.png) | Model | truthful_qa_de | truthfulqa_mc | arc_challenge | arc_challenge_de | hellaswag | hellaswag_de | MMLU | MMLU-DE | mean | |----------------------------------------------------|----------------|---------------|---------------|------------------|-------------|--------------|-------------|-------------|-------------| | meta-llama/Meta-Llama-3-8B-Instruct | 0.47498 | 0.43923 | **0.59642** | 0.47952 | **0.82025** | 0.60008 | **0.66658** | 0.53541 | 0.57656 | | DiscoResearch/Llama3-German-8B | 0.49499 | 0.44838 | 0.55802 | 0.49829 | 0.79924 | 0.65395 | 0.62240 | 0.54413 | 0.57743 | | DiscoResearch/Llama3-German-8B-32k | 0.48920 | 0.45138 | 0.54437 | 0.49232 | 0.79078 | 0.64310 | 0.58774 | 0.47971 | 0.55982 | | **DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1** | **0.53042** | 0.52867 | 0.59556 | **0.53839** | 0.80721 | 0.66440 | 0.61898 | 0.56053 | **0.60552** | | DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1| 0.52749 | **0.53245** | 0.58788 | 0.53754 | 0.80770 | **0.66709** | 0.62123 | **0.56238** | 0.60547 | ## Model Configurations We release DiscoLeo-8B in the following configurations: 1. [Base model with continued pretraining](https://huggingface.co/DiscoResearch/Llama3_German_8B) 2. [Long-context version (32k context length)](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k) 3. [Instruction-tuned version of the base model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) (This model) 4. [Instruction-tuned version of the long-context model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1) 5. [Experimental `DARE-TIES` Merge with Llama3-Instruct](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_8B_DARE_Experimental) 6. [Collection of Quantized versions](https://huggingface.co/collections/DiscoResearch/discoleo-8b-quants-6651bcf8f72c9a37ce485d42) ## Usage Example Here's how to use the model with transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1") prompt = "Schreibe ein Essay über die Bedeutung der Energiewende für Deutschlands Wirtschaft" messages = [ {"role": "system", "content": "Du bist ein hilfreicher Assistent."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Acknowledgements The model was trained and evaluated by [Björn Plüster](https://huggingface.co/bjoernp) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)) with data preparation and project supervision by [Manuel Brack](http://manuel-brack.eu) ([DFKI](https://www.dfki.de/web/), [TU-Darmstadt](https://www.tu-darmstadt.de/)). Instruction tuning was done with the DiscoLM German dataset created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). We extend our gratitude to [LAION](https://laion.ai/) and friends, especially [Christoph Schuhmann](https://entwickler.de/experten/christoph-schuhmann) and [Jenia Jitsev](https://huggingface.co/JJitsev), for initiating this collaboration. The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [Federal Ministry of Education and Research (BMBF)](https://www.bmbf.de/)). The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html) through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).