File size: 8,279 Bytes
568177b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d422520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb40b6f
d422520
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: llama3
language:
- de
- en
library_name: transformers
---

# Llama3_DiscoLeo_Instruct_8B_v0.1_4bit_awq_glc

This model is a 4 bit quantization of [DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1)
created using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) with a custom bilingual calibration dataset and `quant_config = {"zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM"}`.

Copy of original model card:

# Llama3-DiscoLeo-Instruct 8B (version 0.1)

## Thanks and Accreditation

[DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729) 
is the result of a joint effort between [DiscoResearch](https://huggingface.co/DiscoResearch) and [Occiglot](https://huggingface.co/occiglot) 
with support from the [DFKI](https://www.dfki.de/web/) (German Research Center for Artificial Intelligence) and [hessian.Ai](https://hessian.ai). 
Occiglot kindly handled data preprocessing, filtering, and deduplication as part of their latest [dataset release](https://huggingface.co/datasets/occiglot/occiglot-fineweb-v0.5), as well as sharing their compute allocation at hessian.Ai's 42 Supercomputer.

## Model Overview

Llama3_DiscoLeo_Instruct_8B_v0 is an instruction tuned version of our [Llama3-German-8B](https://huggingface.co/DiscoResearch/Llama3_German_8B).
The base model was derived from [Meta's Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) through continuous pretraining on 65 billion high-quality German tokens, similar to previous [LeoLM](https://huggingface.co/LeoLM) or [Occiglot](https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01) models.
We finetuned this checkpoint on the German Instruction dataset from DiscoResearch created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)).


## How to use
Llama3_DiscoLeo_Instruct_8B_v0.1 uses the [Llama-3 chat template](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models), which can be easily used with [transformer's chat templating](https://huggingface.co/docs/transformers/main/en/chat_templating).
See [below](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1#usage-example) for a usage example. 

## Model Training and Hyperparameters
The model was full-fintuned with axolotl on the [hessian.Ai 42](hessian.ai) with 8192 context-length, learning rate 2e-5 and batch size of 16.


## Evaluation and Results

We evaluated the model using a suite of common English Benchmarks and their German counterparts with [GermanBench](https://github.com/bjoernpl/GermanBenchmark).

In the below image and corresponding table, you can see the benchmark scores for the different instruct models compared to Metas instruct version. All checkpoints are available in this [collection](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729).

![instruct scores](instruct_model_benchmarks.png)

| Model                                              | truthful_qa_de | truthfulqa_mc | arc_challenge | arc_challenge_de | hellaswag   | hellaswag_de | MMLU        | MMLU-DE     | mean        |
|----------------------------------------------------|----------------|---------------|---------------|------------------|-------------|--------------|-------------|-------------|-------------|
| meta-llama/Meta-Llama-3-8B-Instruct                | 0.47498        | 0.43923       | **0.59642**   | 0.47952          | **0.82025** | 0.60008      | **0.66658** | 0.53541     | 0.57656     |
| DiscoResearch/Llama3-German-8B                     | 0.49499        | 0.44838       | 0.55802       | 0.49829          | 0.79924     | 0.65395      | 0.62240     | 0.54413     | 0.57743     |
| DiscoResearch/Llama3-German-8B-32k                 | 0.48920        | 0.45138       | 0.54437       | 0.49232          | 0.79078     | 0.64310      | 0.58774     | 0.47971     | 0.55982     |
| **DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1**     | **0.53042**    | 0.52867       | 0.59556       | **0.53839**      | 0.80721     | 0.66440      | 0.61898     | 0.56053     | **0.60552** |
| DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1| 0.52749        | **0.53245**   | 0.58788       | 0.53754          | 0.80770     | **0.66709**  | 0.62123     | **0.56238** | 0.60547     |

## Model Configurations

We release DiscoLeo-8B in the following configurations:
1. [Base model with continued pretraining](https://huggingface.co/DiscoResearch/Llama3_German_8B)
2. [Long-context version (32k context length)](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k)
3. [Instruction-tuned version of the base model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) (This model)
4. [Instruction-tuned version of the long-context model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1)
5. [Experimental `DARE-TIES` Merge with Llama3-Instruct](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_8B_DARE_Experimental)
6. [Collection of Quantized versions](https://huggingface.co/collections/DiscoResearch/discoleo-8b-quants-6651bcf8f72c9a37ce485d42)

## Usage Example
Here's how to use the model with transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1")

prompt = "Schreibe ein Essay über die Bedeutung der Energiewende für Deutschlands Wirtschaft"
messages = [
    {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## Acknowledgements

The model was trained and evaluated by [Björn Plüster](https://huggingface.co/bjoernp) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)) with data preparation and project supervision by [Manuel Brack](http://manuel-brack.eu) ([DFKI](https://www.dfki.de/web/), [TU-Darmstadt](https://www.tu-darmstadt.de/)). Instruction tuning was done with the DiscoLM German dataset created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). We extend our gratitude to [LAION](https://laion.ai/) and friends, especially  [Christoph Schuhmann](https://entwickler.de/experten/christoph-schuhmann) and [Jenia Jitsev](https://huggingface.co/JJitsev), for initiating this collaboration.

The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/)  which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [Federal Ministry of Education and Research (BMBF)](https://www.bmbf.de/)).
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).