--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-amharic-demo-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: am split: test args: am metrics: - name: Wer type: wer value: 0.8639092728485657 --- # wav2vec2-large-xls-r-300m-amharic-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 1.6333 - Wer: 0.8639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.6948 | 5.0 | 100 | 4.1621 | 1.0 | | 4.1026 | 10.0 | 200 | 4.0365 | 1.0 | | 4.0037 | 15.0 | 300 | 3.9726 | 1.0007 | | 3.9485 | 20.0 | 400 | 3.9524 | 1.0007 | | 3.4635 | 25.0 | 500 | 2.4384 | 0.9980 | | 1.1709 | 30.0 | 600 | 1.6987 | 0.9453 | | 0.4955 | 35.0 | 700 | 1.5927 | 0.9073 | | 0.3163 | 40.0 | 800 | 1.6750 | 0.8833 | | 0.2372 | 45.0 | 900 | 1.6683 | 0.8813 | | 0.1896 | 50.0 | 1000 | 1.6555 | 0.8779 | | 0.1619 | 55.0 | 1100 | 1.6312 | 0.8819 | | 0.1473 | 60.0 | 1200 | 1.6333 | 0.8639 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1