DipsankarSinha commited on
Commit
69c7a7d
·
verified ·
1 Parent(s): fb4fd2b

End of training

Browse files
Files changed (1) hide show
  1. README.md +24 -24
README.md CHANGED
@@ -1,18 +1,18 @@
1
  ---
 
2
  base_model: facebook/wav2vec2-xls-r-300m
 
 
3
  datasets:
4
  - common_voice_16_1
5
- license: apache-2.0
6
  metrics:
7
  - wer
8
- tags:
9
- - generated_from_trainer
10
  model-index:
11
  - name: wav2vec2-large-xls-r-300m-amharic-demo-colab
12
  results:
13
  - task:
14
- type: automatic-speech-recognition
15
  name: Automatic Speech Recognition
 
16
  dataset:
17
  name: common_voice_16_1
18
  type: common_voice_16_1
@@ -20,9 +20,9 @@ model-index:
20
  split: test
21
  args: am
22
  metrics:
23
- - type: wer
24
- value: 0.8992661774516344
25
- name: Wer
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.6489
36
- - Wer: 0.8993
37
 
38
  ## Model description
39
 
@@ -53,33 +53,33 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 0.0003
56
- - train_batch_size: 8
57
  - eval_batch_size: 8
58
  - seed: 42
59
  - gradient_accumulation_steps: 2
60
- - total_train_batch_size: 16
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_steps: 100
64
- - num_epochs: 30
65
  - mixed_precision_training: Native AMP
66
 
67
  ### Training results
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Wer |
70
  |:-------------:|:-----:|:----:|:---------------:|:------:|
71
- | 12.8229 | 2.5 | 100 | 4.1682 | 1.0 |
72
- | 4.1232 | 5.0 | 200 | 4.0821 | 1.0 |
73
- | 4.0475 | 7.5 | 300 | 4.0087 | 1.0 |
74
- | 3.9841 | 10.0 | 400 | 3.9677 | 1.0 |
75
- | 3.9469 | 12.5 | 500 | 3.9503 | 1.0 |
76
- | 3.7544 | 15.0 | 600 | 3.3452 | 1.0 |
77
- | 2.1016 | 17.5 | 700 | 1.8871 | 0.9800 |
78
- | 0.9969 | 20.0 | 800 | 1.7061 | 0.9813 |
79
- | 0.6112 | 22.5 | 900 | 1.6420 | 0.9513 |
80
- | 0.4384 | 25.0 | 1000 | 1.6287 | 0.9466 |
81
- | 0.3355 | 27.5 | 1100 | 1.6593 | 0.9273 |
82
- | 0.293 | 30.0 | 1200 | 1.6489 | 0.8993 |
83
 
84
 
85
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
  base_model: facebook/wav2vec2-xls-r-300m
4
+ tags:
5
+ - generated_from_trainer
6
  datasets:
7
  - common_voice_16_1
 
8
  metrics:
9
  - wer
 
 
10
  model-index:
11
  - name: wav2vec2-large-xls-r-300m-amharic-demo-colab
12
  results:
13
  - task:
 
14
  name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
  dataset:
17
  name: common_voice_16_1
18
  type: common_voice_16_1
 
20
  split: test
21
  args: am
22
  metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.8639092728485657
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.6333
36
+ - Wer: 0.8639
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 0.0003
56
+ - train_batch_size: 16
57
  - eval_batch_size: 8
58
  - seed: 42
59
  - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 32
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_steps: 100
64
+ - num_epochs: 60
65
  - mixed_precision_training: Native AMP
66
 
67
  ### Training results
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Wer |
70
  |:-------------:|:-----:|:----:|:---------------:|:------:|
71
+ | 12.6948 | 5.0 | 100 | 4.1621 | 1.0 |
72
+ | 4.1026 | 10.0 | 200 | 4.0365 | 1.0 |
73
+ | 4.0037 | 15.0 | 300 | 3.9726 | 1.0007 |
74
+ | 3.9485 | 20.0 | 400 | 3.9524 | 1.0007 |
75
+ | 3.4635 | 25.0 | 500 | 2.4384 | 0.9980 |
76
+ | 1.1709 | 30.0 | 600 | 1.6987 | 0.9453 |
77
+ | 0.4955 | 35.0 | 700 | 1.5927 | 0.9073 |
78
+ | 0.3163 | 40.0 | 800 | 1.6750 | 0.8833 |
79
+ | 0.2372 | 45.0 | 900 | 1.6683 | 0.8813 |
80
+ | 0.1896 | 50.0 | 1000 | 1.6555 | 0.8779 |
81
+ | 0.1619 | 55.0 | 1100 | 1.6312 | 0.8819 |
82
+ | 0.1473 | 60.0 | 1200 | 1.6333 | 0.8639 |
83
 
84
 
85
  ### Framework versions