Dinithi commited on
Commit
3d051a9
·
1 Parent(s): 2e5fefa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: CancerTextV2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # CancerTextV2
19
+
20
+ This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5913
23
+ - Accuracy: 0.8692
24
+ - Precision: 0.8666
25
+ - Recall: 0.8738
26
+ - F1: 0.8701
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 0.4717 | 1.0 | 600 | 0.3318 | 0.8617 | 0.8562 | 0.8704 | 0.8633 |
59
+ | 0.3248 | 2.0 | 1200 | 0.3144 | 0.8658 | 0.8821 | 0.8455 | 0.8634 |
60
+ | 0.2653 | 3.0 | 1800 | 0.3519 | 0.8625 | 0.8507 | 0.8804 | 0.8653 |
61
+ | 0.2164 | 4.0 | 2400 | 0.4090 | 0.8658 | 0.9002 | 0.8239 | 0.8604 |
62
+ | 0.1884 | 5.0 | 3000 | 0.4413 | 0.8667 | 0.8850 | 0.8439 | 0.8639 |
63
+ | 0.1582 | 6.0 | 3600 | 0.4415 | 0.865 | 0.8971 | 0.8256 | 0.8599 |
64
+ | 0.1377 | 7.0 | 4200 | 0.5165 | 0.8708 | 0.8694 | 0.8738 | 0.8716 |
65
+ | 0.1192 | 8.0 | 4800 | 0.5699 | 0.8675 | 0.8826 | 0.8488 | 0.8654 |
66
+ | 0.1081 | 9.0 | 5400 | 0.5837 | 0.8692 | 0.8666 | 0.8738 | 0.8701 |
67
+ | 0.1018 | 10.0 | 6000 | 0.5913 | 0.8692 | 0.8666 | 0.8738 | 0.8701 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.21.2
73
+ - Pytorch 1.12.1+cu113
74
+ - Datasets 2.4.0
75
+ - Tokenizers 0.12.1