update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc0-1.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: CancerTextV2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# CancerTextV2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5913
|
23 |
+
- Accuracy: 0.8692
|
24 |
+
- Precision: 0.8666
|
25 |
+
- Recall: 0.8738
|
26 |
+
- F1: 0.8701
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
+
| 0.4717 | 1.0 | 600 | 0.3318 | 0.8617 | 0.8562 | 0.8704 | 0.8633 |
|
59 |
+
| 0.3248 | 2.0 | 1200 | 0.3144 | 0.8658 | 0.8821 | 0.8455 | 0.8634 |
|
60 |
+
| 0.2653 | 3.0 | 1800 | 0.3519 | 0.8625 | 0.8507 | 0.8804 | 0.8653 |
|
61 |
+
| 0.2164 | 4.0 | 2400 | 0.4090 | 0.8658 | 0.9002 | 0.8239 | 0.8604 |
|
62 |
+
| 0.1884 | 5.0 | 3000 | 0.4413 | 0.8667 | 0.8850 | 0.8439 | 0.8639 |
|
63 |
+
| 0.1582 | 6.0 | 3600 | 0.4415 | 0.865 | 0.8971 | 0.8256 | 0.8599 |
|
64 |
+
| 0.1377 | 7.0 | 4200 | 0.5165 | 0.8708 | 0.8694 | 0.8738 | 0.8716 |
|
65 |
+
| 0.1192 | 8.0 | 4800 | 0.5699 | 0.8675 | 0.8826 | 0.8488 | 0.8654 |
|
66 |
+
| 0.1081 | 9.0 | 5400 | 0.5837 | 0.8692 | 0.8666 | 0.8738 | 0.8701 |
|
67 |
+
| 0.1018 | 10.0 | 6000 | 0.5913 | 0.8692 | 0.8666 | 0.8738 | 0.8701 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.21.2
|
73 |
+
- Pytorch 1.12.1+cu113
|
74 |
+
- Datasets 2.4.0
|
75 |
+
- Tokenizers 0.12.1
|