--- base_model: - m-a-p/neo_7b - m-a-p/neo_7b tags: - merge - mergekit - lazymergekit - m-a-p/neo_7b --- # Neo_7b-merge4 Neo_7b-merge4 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [m-a-p/neo_7b](https://huggingface.co/m-a-p/neo_7b) * [m-a-p/neo_7b](https://huggingface.co/m-a-p/neo_7b) ## 🧩 Configuration ```yaml slices: # Group 1 - sources: - model: m-a-p/neo_7b layer_range: [0, 0] - model: m-a-p/neo_7b layer_range: [3, 3] - sources: - model: m-a-p/neo_7b layer_range: [1, 1] - model: m-a-p/neo_7b layer_range: [3, 3] - sources: - model: m-a-p/neo_7b layer_range: [2, 2] - model: m-a-p/neo_7b layer_range: [3, 3] # Group 2 - sources: - model: m-a-p/neo_7b layer_range: [4, 4] - model: m-a-p/neo_7b layer_range: [7, 7] - sources: - model: m-a-p/neo_7b layer_range: [5, 5] - model: m-a-p/neo_7b layer_range: [7, 7] - sources: - model: m-a-p/neo_7b layer_range: [6, 6] - model: m-a-p/neo_7b layer_range: [7, 7] # Group 3 - sources: - model: m-a-p/neo_7b layer_range: [8, 8] - model: m-a-p/neo_7b layer_range: [11, 11] - sources: - model: m-a-p/neo_7b layer_range: [9, 9] - model: m-a-p/neo_7b layer_range: [11, 11] - sources: - model: m-a-p/neo_7b layer_range: [10, 10] - model: m-a-p/neo_7b layer_range: [11, 11] # Group 4 - sources: - model: m-a-p/neo_7b layer_range: [12, 12] - model: m-a-p/neo_7b layer_range: [15, 15] - sources: - model: m-a-p/neo_7b layer_range: [13, 13] - model: m-a-p/neo_7b layer_range: [15, 15] - sources: - model: m-a-p/neo_7b layer_range: [14, 14] - model: m-a-p/neo_7b layer_range: [15, 15] # Group 5 - sources: - model: m-a-p/neo_7b layer_range: [16, 16] - model: m-a-p/neo_7b layer_range: [19, 19] - sources: - model: m-a-p/neo_7b layer_range: [17, 17] - model: m-a-p/neo_7b layer_range: [19, 19] - sources: - model: m-a-p/neo_7b layer_range: [18, 18] - model: m-a-p/neo_7b layer_range: [19, 19] # Group 6 - sources: - model: m-a-p/neo_7b layer_range: [20, 20] - model: m-a-p/neo_7b layer_range: [23, 23] - sources: - model: m-a-p/neo_7b layer_range: [21, 21] - model: m-a-p/neo_7b layer_range: [23, 23] - sources: - model: m-a-p/neo_7b layer_range: [22, 22] - model: m-a-p/neo_7b layer_range: [23, 23] # Group 7 (last group) - sources: - model: m-a-p/neo_7b layer_range: [24, 24] - model: m-a-p/neo_7b layer_range: [27, 27] - sources: - model: m-a-p/neo_7b layer_range: [25, 25] - model: m-a-p/neo_7b layer_range: [27, 27] - sources: - model: m-a-p/neo_7b layer_range: [26, 26] - model: m-a-p/neo_7b layer_range: [27, 27] merge_method: slerp base_model: m-a-p/neo_7b parameters: t: 0.3333 # Apply 1/3 of the 4th layer to each of the previous 3 layers dtype: bfloat16 output_path: ./merged_redistributed_neo_7b model_config: num_hidden_layers: 21 attention_bias: false attention_dropout: 0.0 hidden_act: "silu" hidden_size: 3072 intermediate_size: 24576 num_attention_heads: 16 num_key_value_heads: 16 rms_norm_eps: 1e-05 rope_theta: 10000.0 use_cache: true ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DewEfresh/Neo_7b-merge4" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```