--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.1 args: 'split: test' metrics: - name: Wer type: wer value: 6.286946013912929 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1269 - Wer: 6.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.2361 | 0.2825 | 100 | 1.0425 | 10.4870 | | 0.6631 | 0.5650 | 200 | 0.6451 | 9.4908 | | 0.419 | 0.8475 | 300 | 0.3854 | 8.5535 | | 0.1538 | 1.1299 | 400 | 0.1895 | 7.2635 | | 0.1234 | 1.4124 | 500 | 0.1644 | 6.8454 | | 0.1134 | 1.6949 | 600 | 0.1470 | 6.6201 | | 0.1071 | 1.9774 | 700 | 0.1358 | 6.0289 | | 0.0721 | 2.2599 | 800 | 0.1329 | 6.1302 | | 0.0693 | 2.5424 | 900 | 0.1299 | 6.3065 | | 0.0635 | 2.8249 | 1000 | 0.1275 | 6.5025 | | 0.0441 | 3.1073 | 1100 | 0.1269 | 6.2869 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1