DeusImperator commited on
Commit
5745e82
·
verified ·
1 Parent(s): ce339ea

Upload 15 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tekken.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - fr
6
+ - de
7
+ - es
8
+ - it
9
+ - pt
10
+ - ru
11
+ - zh
12
+ - ja
13
+ ---
14
+
15
+ # Mistral-Nemo-Instruct-2407 - EXL2 8bpw max
16
+
17
+ This is a 8bpw EXL2 quant of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
18
+
19
+ This quant was made using exllamav2-0.1.7 with default dataset. I used a slightly modified quantization script to force use of highest bpw methods for all layers in the model (which is usually "1:8b_128g s4") to ensure max quality.
20
+
21
+ I also added a small fix in config file to set max default context at 128k as original Mistral-Nemo should have.
22
+
23
+ I tested this quant shortly in some random RPs (including ones over 8k context) and it seems to work fine.
24
+
25
+ ## Prompt Templates
26
+
27
+ Uses Mistral format.
28
+
29
+ ### Original readme below
30
+
31
+ ---
32
+
33
+ # Model Card for Mistral-Nemo-Instruct-2407
34
+
35
+ The Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
36
+
37
+ For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
38
+
39
+ ## Key features
40
+ - Released under the **Apache 2 License**
41
+ - Pre-trained and instructed versions
42
+ - Trained with a **128k context window**
43
+ - Trained on a large proportion of **multilingual and code data**
44
+ - Drop-in replacement of Mistral 7B
45
+
46
+ ## Model Architecture
47
+ Mistral Nemo is a transformer model, with the following architecture choices:
48
+ - **Layers:** 40
49
+ - **Dim:** 5,120
50
+ - **Head dim:** 128
51
+ - **Hidden dim:** 14,436
52
+ - **Activation Function:** SwiGLU
53
+ - **Number of heads:** 32
54
+ - **Number of kv-heads:** 8 (GQA)
55
+ - **Vocabulary size:** 2**17 ~= 128k
56
+ - **Rotary embeddings (theta = 1M)**
57
+
58
+ ## Metrics
59
+
60
+ ### Main Benchmarks
61
+
62
+ | Benchmark | Score |
63
+ | --- | --- |
64
+ | HellaSwag (0-shot) | 83.5% |
65
+ | Winogrande (0-shot) | 76.8% |
66
+ | OpenBookQA (0-shot) | 60.6% |
67
+ | CommonSenseQA (0-shot) | 70.4% |
68
+ | TruthfulQA (0-shot) | 50.3% |
69
+ | MMLU (5-shot) | 68.0% |
70
+ | TriviaQA (5-shot) | 73.8% |
71
+ | NaturalQuestions (5-shot) | 31.2% |
72
+
73
+ ### Multilingual Benchmarks (MMLU)
74
+
75
+ | Language | Score |
76
+ | --- | --- |
77
+ | French | 62.3% |
78
+ | German | 62.7% |
79
+ | Spanish | 64.6% |
80
+ | Italian | 61.3% |
81
+ | Portuguese | 63.3% |
82
+ | Russian | 59.2% |
83
+ | Chinese | 59.0% |
84
+ | Japanese | 59.0% |
85
+
86
+ ## Usage
87
+
88
+ The model can be used with three different frameworks
89
+
90
+ - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407#mistral-inference)
91
+ - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
92
+ - [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct)
93
+
94
+ ### Mistral Inference
95
+
96
+ #### Install
97
+
98
+ It is recommended to use `mistralai/Mistral-Nemo-Instruct-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
99
+
100
+ ```
101
+ pip install mistral_inference
102
+ ```
103
+
104
+ #### Download
105
+
106
+ ```py
107
+ from huggingface_hub import snapshot_download
108
+ from pathlib import Path
109
+
110
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
111
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
112
+
113
+ snapshot_download(repo_id="mistralai/Mistral-Nemo-Instruct-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
114
+ ```
115
+
116
+ #### Chat
117
+
118
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
119
+
120
+ ```
121
+ mistral-chat $HOME/mistral_models/Nemo-Instruct --instruct --max_tokens 256 --temperature 0.35
122
+ ```
123
+
124
+ *E.g.* Try out something like:
125
+ ```
126
+ How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.
127
+ ```
128
+
129
+ #### Instruct following
130
+
131
+ ```py
132
+ from mistral_inference.transformer import Transformer
133
+ from mistral_inference.generate import generate
134
+
135
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
136
+ from mistral_common.protocol.instruct.messages import UserMessage
137
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
138
+
139
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
140
+ model = Transformer.from_folder(mistral_models_path)
141
+
142
+ prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."
143
+
144
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])
145
+
146
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
147
+
148
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
149
+ result = tokenizer.decode(out_tokens[0])
150
+
151
+ print(result)
152
+ ```
153
+
154
+ #### Function calling
155
+
156
+ ```py
157
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
158
+ from mistral_inference.transformer import Transformer
159
+ from mistral_inference.generate import generate
160
+
161
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
162
+ from mistral_common.protocol.instruct.messages import UserMessage
163
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
164
+
165
+
166
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
167
+ model = Transformer.from_folder(mistral_models_path)
168
+
169
+ completion_request = ChatCompletionRequest(
170
+ tools=[
171
+ Tool(
172
+ function=Function(
173
+ name="get_current_weather",
174
+ description="Get the current weather",
175
+ parameters={
176
+ "type": "object",
177
+ "properties": {
178
+ "location": {
179
+ "type": "string",
180
+ "description": "The city and state, e.g. San Francisco, CA",
181
+ },
182
+ "format": {
183
+ "type": "string",
184
+ "enum": ["celsius", "fahrenheit"],
185
+ "description": "The temperature unit to use. Infer this from the users location.",
186
+ },
187
+ },
188
+ "required": ["location", "format"],
189
+ },
190
+ )
191
+ )
192
+ ],
193
+ messages=[
194
+ UserMessage(content="What's the weather like today in Paris?"),
195
+ ],
196
+ )
197
+
198
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
199
+
200
+ out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
201
+ result = tokenizer.decode(out_tokens[0])
202
+
203
+ print(result)
204
+ ```
205
+
206
+ ### Transformers
207
+
208
+ > [!IMPORTANT]
209
+ > NOTE: Until a new release has been made, you need to install transformers from source:
210
+ > ```sh
211
+ > pip install git+https://github.com/huggingface/transformers.git
212
+ > ```
213
+
214
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
215
+
216
+ ```py
217
+ from transformers import pipeline
218
+
219
+ messages = [
220
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
221
+ {"role": "user", "content": "Who are you?"},
222
+ ]
223
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-Nemo-Instruct-2407")
224
+ chatbot(messages)
225
+ ```
226
+
227
+ > [!TIP]
228
+ > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
229
+
230
+ ## Limitations
231
+
232
+ The Mistral Nemo Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
233
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
234
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
235
+
236
+ ## The Mistral AI Team
237
+
238
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.43.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 131072,
26
+ "quantization_config": {
27
+ "quant_method": "exl2",
28
+ "version": "0.1.7",
29
+ "bits": 8.0,
30
+ "head_bits": 8,
31
+ "calibration": {
32
+ "rows": 115,
33
+ "length": 2048,
34
+ "dataset": "(default)"
35
+ }
36
+ }
37
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.43.0.dev0"
6
+ }
measurement_Mistral-Nemo-Instruct-2407_exl2_8bpw_max.json ADDED
The diff for this file is too large to render. See raw diff
 
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495564800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
output-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa730416c9eb759e1b568af82d5b155d1482f2a1e1062d9cd1b7b2c84a1a6558
3
+ size 8590037736
output-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a68e71b0212933b18f5dff68909cfc5ae00c4c3264c89926aae7849d60ab51d
3
+ size 4381784984
params.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dim": 5120,
3
+ "n_layers": 40,
4
+ "head_dim": 128,
5
+ "hidden_dim": 14336,
6
+ "n_heads": 32,
7
+ "n_kv_heads": 8,
8
+ "norm_eps": 1e-05,
9
+ "vocab_size": 131072,
10
+ "rope_theta": 1000000.0
11
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tekken.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccd1665d2e477697c33cb7f0daa6f6dfefc57a0a6bceb66d4be52952f827516
3
+ size 14801223
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff