Denyol commited on
Commit
b9663c6
·
1 Parent(s): c5c46b6

End of training

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: FakeNews-deberta-base-stopwords
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # FakeNews-deberta-base-stopwords
17
+
18
+ This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2102
21
+ - Accuracy: 0.9612
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 4
42
+ - eval_batch_size: 4
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 5
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.3343 | 1.0 | 1605 | 0.3262 | 0.9196 |
53
+ | 0.3889 | 2.0 | 3210 | 0.3157 | 0.9276 |
54
+ | 0.2327 | 3.0 | 4815 | 0.2983 | 0.9383 |
55
+ | 0.2261 | 4.0 | 6420 | 0.2127 | 0.9528 |
56
+ | 0.1629 | 5.0 | 8025 | 0.2102 | 0.9612 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.34.1
62
+ - Pytorch 2.1.0+cu118
63
+ - Datasets 2.14.6
64
+ - Tokenizers 0.14.1