File size: 37,209 Bytes
1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 d45e0b2 1ea9622 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
import torch.utils.checkpoint
import transformers
from .modeling_internlm2 import InternLM2ForCausalLM
from .modeling_phi3 import Phi3ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers import StoppingCriteriaList, StoppingCriteria
from .configuration_sa2va_chat import Sa2VAChatConfig
from .modeling_intern_vit import InternVisionModel, has_flash_attn
from .sam2 import SAM2
from .templates import PROMPT_TEMPLATE
import numpy as np
from torchvision.transforms.functional import resize, to_pil_image
from types import MethodType
import torch.nn.functional as F
try:
from .flash_attention import FlashAttention
has_flash_attn = True
except:
print('FlashAttention is not installed.')
has_flash_attn = False
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class StopWordStoppingCriteria(StoppingCriteria):
"""StopWord stopping criteria."""
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace('\r', '').replace('\n', '')
return cur_text[-self.length:] == self.stop_word
def get_stop_criteria(
tokenizer,
stop_words=[],
):
stop_criteria = StoppingCriteriaList()
for word in stop_words:
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
return stop_criteria
class DirectResize:
def __init__(self, target_length: int) -> None:
self.target_length = target_length
def apply_image(self, image: np.ndarray) -> np.ndarray:
"""
Expects a numpy array with shape HxWxC in uint8 format.
"""
img = to_pil_image(image, mode='RGB')
return np.array(img.resize((self.target_length, self.target_length)))
class Sa2VAChatModel(PreTrainedModel):
config_class = Sa2VAChatConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2']
_supports_flash_attn_2 = True
supports_gradient_checkpointing = True
def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.template = self.template.replace('-', '_')
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.llm_arch_name = config.llm_config.architectures[0]
use_flash_attn = use_flash_attn if has_flash_attn else False
config.vision_config.use_flash_attn = True if use_flash_attn else False
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
self.language_model = Phi3ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.img_context_token_id = None
self.conv_template = PROMPT_TEMPLATE[self.template]
self.template = self.conv_template
if hasattr(config, 'system_message'):
self.system_message = config.system_message
self.num_samples = 0
if config.use_backbone_lora:
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
if config.use_llm_lora:
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
self.grounding_encoder = SAM2()
out_dim = self.grounding_encoder.hidden_dim
in_dim = llm_hidden_size
self.text_hidden_fcs = nn.Sequential(
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
)
self.init_prediction_config = False
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.vision_model = get_peft_model(self.vision_model, lora_config)
self.vision_model.print_trainable_parameters()
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
# Determine the target modules based on the architecture of the language model
if self.llm_arch_name == 'InternLM2ForCausalLM':
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
elif self.llm_arch_name == 'Phi3ForCausalLM':
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
else:
raise NotImplemented
lora_config = LoraConfig(
r=r,
target_modules=target_modules,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
task_type='CAUSAL_LM'
)
self.language_model = get_peft_model(self.language_model, lora_config)
self.language_model.enable_input_require_grads()
self.language_model.print_trainable_parameters()
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
@property
def lm_head(self):
return self.language_model.get_output_embeddings()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def forward(self, data, data_samples=None, mode='loss'):
pixel_values = data['pixel_values']
if type(pixel_values) is list or pixel_values.ndim == 5:
if type(pixel_values) is list:
pixel_values = [
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
]
# b*n, c, h, w
concat_images = torch.cat(
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
else:
raise NotImplementedError()
input_ids = data['input_ids']
position_ids = data['position_ids']
attention_mask = data['attention_mask']
# sum is 0 are text
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0
image_flags = image_flags.long()
labels = data['labels']
use_cache = False
if 'vp_overall_mask' not in data.keys():
vp_overall_mask = None
else:
vp_overall_mask = data['vp_overall_mask']
if 'prompt_masks' in data.keys():
prompt_masks = data['prompt_masks']
else:
prompt_masks = None
outputs = self._llm_forward(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
image_flags=image_flags,
pixel_values=concat_images,
labels=labels,
use_cache=use_cache,
output_hidden_states=True,
vp_overall_mask=vp_overall_mask,
prompt_masks=prompt_masks,
)
return outputs
def _llm_forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
vp_overall_mask=None,
prompt_masks=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None \
else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
# We only added the clone code here to avoid the error.
input_embeds = self.language_model.get_input_embeddings()(
input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds.to(input_embeds.dtype) # FIXME: why vit_embeds is float16?
fast_vit_embeds = None
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
self._count += 1
if vp_overall_mask is not None and prompt_masks is not None:
vp_embeds = []
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
vp_overall_mask = vp_overall_mask[image_flags == 1]
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
i_vp_img = 0
for i_img in range(len(vit_embeds)):
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
if vp_overall_mask[i_img]:
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
objects_prompt_masks = prompt_masks[i_vp_img]
n_obj = len(objects_prompt_masks)
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
i_vp_img += 1
vp_embeds = torch.cat(vp_embeds, dim=0)
else:
vp_embeds = None
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
if vp_embeds is None:
try:
input_embeds[selected] = vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape='
f'{input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
if n_token > len(vit_embeds):
print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!")
expand_ratio = n_token // len(vit_embeds) + 1
vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0)
input_embeds[selected] = vit_embeds[:n_token]
else:
try:
input_embeds[selected] = vp_embeds.reshape(-1, C)
except Exception as e:
vp_embeds = vp_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape='
f'{input_embeds[selected].shape}, '
f'vp_embeds.shape={vp_embeds.shape}')
n_token = selected.sum()
if n_token > len(vp_embeds):
print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!")
expand_ratio = n_token // len(vp_embeds) + 1
vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0)
input_embeds[selected] = vp_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(
-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
prompt_masks=None,
vp_overall_mask=None,
**generate_kwargs,
) -> torch.LongTensor:
device = self.device
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
if type(pixel_values) is list or pixel_values.ndim == 5:
if type(pixel_values) is list:
pixel_values = [
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
]
# b*n, c, h, w
pixel_values = torch.cat(
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
vit_embeds = self.extract_feature(pixel_values.to(device))
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
image_flags = image_flags.long()
vit_embeds = vit_embeds[image_flags == 1]
input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device))
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if vp_overall_mask is not None and prompt_masks is not None:
vp_embeds = []
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
vp_overall_mask = vp_overall_mask[image_flags == 1]
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
i_vp_img = 0
for i_img in range(len(vit_embeds)):
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
if vp_overall_mask[i_img]:
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
objects_prompt_masks = prompt_masks[i_vp_img]
n_obj = len(objects_prompt_masks)
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
i_vp_img += 1
vp_embeds = torch.cat(vp_embeds, dim=0)
else:
vp_embeds = None
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
if vp_embeds is None:
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
else:
if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)):
print("Shape mismatch, selected is {}, vp embeds is {} !!!" \
.format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))))
min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))
input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device)
else:
input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask.to(device),
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16):
# set stop criteria and generation configs for model
if not hasattr(self, 'tokenizer'):
self.tokenizer = tokenizer
self.bot_name = 'BOT'
stop_words = []
stop_words += self.template.get('STOP_WORDS', [])
stop_criteria = get_stop_criteria(
tokenizer=self.tokenizer, stop_words=stop_words)
self.stop_criteria = stop_criteria
default_generation_kwargs = dict(
max_new_tokens=max_new_tokens,
do_sample=False,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=(
self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None
else self.tokenizer.eos_token_id
),
)
self.gen_config = GenerationConfig(**default_generation_kwargs)
self.init_prediction_config = True
self.torch_dtype = torch_dtype
self.to(torch_dtype)
self.extra_image_processor = DirectResize(target_length=1024, )
# for multi image process
self.min_dynamic_patch = 1
self.max_dynamic_patch = 12
self.downsample_ratio = 0.5
self.image_size = 448
self.use_thumbnail = True
patch_size = 14
self.patch_size = patch_size
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
self.IMAGENET_STD = (0.229, 0.224, 0.225)
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
self.IMG_START_TOKEN = '<img>'
self.IMG_END_TOKEN = '</img>'
self.transformer = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
self.VP_START_TOKEN = '<vp>'
self.VP_END_TOKEN = '</vp>'
# change phi3 prepare for generation fuction
if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model)
img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
self.img_context_token_id = img_context_token_id
self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]')
return
def predict_forward(
self,
image=None,
video=None,
text=None,
past_text='',
mask_prompts=None,
tokenizer=None,
):
if not self.init_prediction_config:
assert tokenizer
self.preparing_for_generation(tokenizer=tokenizer)
input_dict = {}
if video is not None:
pixel_values = []
extra_pixel_values = []
ori_image_size = video[0].size
for frame_idx, frame_image in enumerate(video):
assert ori_image_size == frame_image.size
g_image = np.array(frame_image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_image = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
extra_pixel_values.append(g_image)
if frame_idx < 5:
img = self.transformer(frame_image)
pixel_values.append(img)
pixel_values = torch.stack(pixel_values, dim=0).to(self.torch_dtype) # (n_f, 3, h, w)
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
]).to(self.torch_dtype)
num_image_tokens = self.patch_token
num_frames = 5
input_dict['vp_overall_mask'] = None
else:
ori_image_size = image.size
# prepare grounding images
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype)
extra_pixel_values = [g_pixel_values]
g_pixel_values = torch.stack([
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
]).to(self.torch_dtype)
images = dynamic_preprocess(image, self.min_dynamic_patch,
self.max_dynamic_patch,
self.image_size, self.use_thumbnail)
if mask_prompts is not None:
vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True])
input_dict['vp_overall_mask'] = vp_overall_mask
else:
input_dict['vp_overall_mask'] = None
pixel_values = [self.transformer(image) for image in images]
pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
num_image_tokens = pixel_values.shape[0] * self.patch_token
num_frames = 1
input_dict['g_pixel_values'] = g_pixel_values
input_dict['pixel_values'] = pixel_values
if mask_prompts is not None:
# reshape mask prompts to feature size
mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts]
mask_prompts = [F.interpolate(
item.unsqueeze(0),
size=(int(self.image_size // self.patch_size * self.downsample_ratio),
int(self.image_size // self.patch_size * self.downsample_ratio)),
mode='nearest').squeeze(0) for item in mask_prompts]
region_pixels = []
for mask_prompt in mask_prompts[0]:
region_pixels.append(mask_prompt.bool().to(torch.int64).sum())
vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0]))
for i in range(len(mask_prompts[0])):
vp_token_str = vp_token_str + \
f"region{i + 1}" + self.VP_START_TOKEN + \
self.IMG_CONTEXT_TOKEN * region_pixels[i] + \
self.VP_END_TOKEN
if i == len(mask_prompts[0]) - 1:
vp_token_str = vp_token_str + '.\n'
else:
vp_token_str = vp_token_str + ', '
else:
vp_token_str = ''
image_token_str = f'{self.IMG_START_TOKEN}' \
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
f'{self.IMG_END_TOKEN}'
image_token_str = image_token_str + '\n'
image_token_str = image_token_str * num_frames
image_token_str = image_token_str.strip()
ret_masks = []
if '<image>' in text or mask_prompts is not None:
assert past_text is None or len(past_text) == 0
text = text.replace('<image>', image_token_str + vp_token_str)
input_text = ''
input_text += self.template['INSTRUCTION'].format(
input=text, round=1, bot_name=self.bot_name)
input_text = past_text + input_text
ids = self.tokenizer.encode(input_text)
ids = torch.tensor(ids).cuda().unsqueeze(0)
attention_mask = torch.ones_like(ids, dtype=torch.bool)
mm_inputs = {
'pixel_values': input_dict['pixel_values'],
'input_ids': ids,
'attention_mask': attention_mask,
'position_ids': None,
'past_key_values': None,
'labels': None,
'prompt_masks': mask_prompts,
'vp_overall_mask': input_dict['vp_overall_mask'],
}
generate_output = self.generate(
**mm_inputs,
generation_config=self.gen_config,
streamer=None,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria,
output_hidden_states=True,
return_dict_in_generate=True
)
predict = self.tokenizer.decode(
generate_output.sequences[0], skip_special_tokens=False).strip()
# if have seg result, find the seg hidden states
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1][0] for item in hidden_states]
last_hidden_states = torch.cat(last_hidden_states, dim=0)
seg_hidden_states = get_seg_hidden_states(
last_hidden_states, generate_output.sequences[0][:-1],
seg_id=self.seg_token_idx
)
all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
for seg_hidden_states in all_seg_hidden_states:
seg_hidden_states = seg_hidden_states.unsqueeze(0)
g_pixel_values = input_dict['g_pixel_values']
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
pred_masks = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * num_frames)
w, h = ori_image_size
masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False)
masks = masks[:, 0]
masks = masks.sigmoid() > 0.5
masks = masks.cpu().numpy()
ret_masks.append(masks)
return {'prediction': predict, 'prediction_masks': ret_masks,}
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
seg_mask = output_ids == seg_id
n_out = len(seg_mask)
if n_out == 0:
return hidden_states[0:0]
return hidden_states[-n_out:][seg_mask]
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image,
min_num=1,
max_num=6,
image_size=448,
use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1) for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
target_ratios, orig_width,
orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
from transformers.cache_utils import Cache, DynamicCache
def prepare_inputs_for_generation_phi3(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs.update(
{
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
|