File size: 6,665 Bytes
e1d7970 fadf077 e814e6a 3484ab6 73286d4 e9d7396 c91dc28 e9d7396 e4eee79 e9d7396 c91dc28 73286d4 16954e7 3484ab6 c91dc28 3484ab6 f3e7417 3484ab6 16954e7 e43841a 3484ab6 73286d4 3484ab6 73286d4 e814e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
license: llama3.1
datasets:
- DebateLabKIT/deepa2-conversations
- DebateLabKIT/deep-argmap-conversations
- allenai/tulu-3-sft-mixture
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- logic
- argumentation
- critical-thinking
- argument-mapping
- trl
- sft
model-index:
- name: Llama-3.1-Argunaut-1-8B-SFT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 55.19
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.19
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.18
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.85
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.47
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
name: Open LLM Leaderboard
---
# Model Card for Llama-3.1-Argunaut-1-8B-SFT
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "Are you familiar with Argdown syntax? What's its purpose?"
generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Evals
LM Eval Harness results (local completions/vllm): [wandb report](https://api.wandb.ai/links/ggbetz/3bwr0ou6)
Pinning `Llama-3.1-Argunaut-1-8B-SFT` against top-performing LLama-8B models from [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/):
|Model|BBH|MATH|GPQA|MMLU Pro|
|:--------|:---:|:---:|:---:|:---:|
| **Llama-3.1-Argunaut-1-8B-SFT** | 44.6% | 9.0% | 32.1% | 34.5% |
| meta-llama/Meta-Llama-3.1-8B-Instruct | 29.9% | 19.3% | 2.6% | 30.7% |
| arcee-ai/Llama-3.1-SuperNova-Lite | 31.6% | 17.4% | 7.5% | 32.0% |
| allenai/Llama-3.1-Tulu-3-8B-SFT | 13.9% | 11.4% | 3.7% | 20.1% |
## SFT dataset mixture
|Dataset|Weight (examples)|Weight (tokens)|
|:------|:----:|:----:|
|DebateLabKIT/deepa2-conversations|25%|49%|
|DebateLabKIT/deep-argmap-conversations|25%|18%|
|allenai/tulu-3-sft-mixture|50%|33%|
## Training procedure
Trained with SFT on **1M examples** and for 1 epoch with
* context length 8196
* packing (trl implementation)
* *spectrum* (top 30 percent)
```yaml
# Training parameters
num_train_epochs: 1
per_device_train_batch_size: 8
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
learning_rate: 5.0e-6 # following _Tülu 3_ recipe
lr_scheduler_type: cosine
warmup_ratio: 0.1
```
Hardware: 2 x H100 GPUs.
_This work was performed on the HoreKa supercomputer funded by the
Ministry of Science, Research and the Arts Baden-Württemberg and by
the Federal Ministry of Education and Research._
### Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.4.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Credits
This work wouldn't be possible without all the **great contributions from the open LLM community**. Thank you! Special kudos go to
- @philschmid for his latest [fine-tuning boilerplate](https://www.philschmid.de/fine-tune-llms-in-2025)
- @lvwerra, @lewtun et al for building and maintaining [trl](https://github.com/huggingface/trl)
- @cognitivecomputations for sharing [spectrum](https://github.com/cognitivecomputations/spectrum/tree/main)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/DebateLabKIT__Llama-3.1-Argunaut-1-8B-SFT-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 23.56|
|IFEval (0-Shot) | 55.19|
|BBH (3-Shot) | 27.19|
|MATH Lvl 5 (4-Shot)| 11.18|
|GPQA (0-shot) | 4.47|
|MuSR (0-shot) | 15.85|
|MMLU-PRO (5-shot) | 27.47|
|