DazMashaly commited on
Commit
a3ca589
·
1 Parent(s): 0263443

DazMashaly/swin-finetuned-food101

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swin-large-patch4-window7-224-in22k
4
+ tags:
5
+ - image-classification
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: swin-finetuned-food101
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: zindi
19
+ type: imagefolder
20
+ config: default
21
+ split: test
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.766589207332817
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # swin-finetuned-food101
33
+
34
+ This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the zindi dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.5697
37
+ - Accuracy: 0.7666
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 3
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.7373 | 1.0 | 173 | 0.6503 | 0.7366 |
72
+ | 0.6106 | 2.0 | 347 | 0.5950 | 0.7503 |
73
+ | 0.5135 | 2.99 | 519 | 0.5697 | 0.7666 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.35.2
79
+ - Pytorch 2.1.0+cu121
80
+ - Datasets 2.16.0
81
+ - Tokenizers 0.15.0
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.99,
3
+ "eval_accuracy": 0.766589207332817,
4
+ "eval_loss": 0.5696694254875183,
5
+ "eval_runtime": 266.3661,
6
+ "eval_samples_per_second": 14.54,
7
+ "eval_steps_per_second": 0.458
8
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.99,
3
+ "eval_accuracy": 0.766589207332817,
4
+ "eval_loss": 0.5696694254875183,
5
+ "eval_runtime": 266.3661,
6
+ "eval_samples_per_second": 14.54,
7
+ "eval_steps_per_second": 0.458
8
+ }
runs/Dec23_09-07-40_bf6a584f982d/events.out.tfevents.1703331328.bf6a584f982d.11311.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c32488cbd5c67b42af2f8e9b7b64f391511b3a52bb7632b60cf7d3d676d507
3
+ size 411