DazMashaly
commited on
Commit
·
a3ca589
1
Parent(s):
0263443
DazMashaly/swin-finetuned-food101
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-large-patch4-window7-224-in22k
|
4 |
+
tags:
|
5 |
+
- image-classification
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: swin-finetuned-food101
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: zindi
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: test
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.766589207332817
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# swin-finetuned-food101
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the zindi dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.5697
|
37 |
+
- Accuracy: 0.7666
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 32
|
58 |
+
- eval_batch_size: 32
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 128
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 3
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.7373 | 1.0 | 173 | 0.6503 | 0.7366 |
|
72 |
+
| 0.6106 | 2.0 | 347 | 0.5950 | 0.7503 |
|
73 |
+
| 0.5135 | 2.99 | 519 | 0.5697 | 0.7666 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.35.2
|
79 |
+
- Pytorch 2.1.0+cu121
|
80 |
+
- Datasets 2.16.0
|
81 |
+
- Tokenizers 0.15.0
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.99,
|
3 |
+
"eval_accuracy": 0.766589207332817,
|
4 |
+
"eval_loss": 0.5696694254875183,
|
5 |
+
"eval_runtime": 266.3661,
|
6 |
+
"eval_samples_per_second": 14.54,
|
7 |
+
"eval_steps_per_second": 0.458
|
8 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.99,
|
3 |
+
"eval_accuracy": 0.766589207332817,
|
4 |
+
"eval_loss": 0.5696694254875183,
|
5 |
+
"eval_runtime": 266.3661,
|
6 |
+
"eval_samples_per_second": 14.54,
|
7 |
+
"eval_steps_per_second": 0.458
|
8 |
+
}
|
runs/Dec23_09-07-40_bf6a584f982d/events.out.tfevents.1703331328.bf6a584f982d.11311.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72c32488cbd5c67b42af2f8e9b7b64f391511b3a52bb7632b60cf7d3d676d507
|
3 |
+
size 411
|