Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_eng_yor_mt ## Model description **mT5_base_yor_eng_mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned mT5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for ADR. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("") model = AutoModelForTokenClassification.from_pretrained("") nlp = pipeline("", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 9.82 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By David Adelani ``` ```