File size: 1,711 Bytes
b8aac90 219e251 b8aac90 13a6a4b b8aac90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
Hugging Face's logo
---
language:
- yo
- en
datasets:
- JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)
---
# mT5_base_eng_yor_mt
## Model description
**mT5_base_yor_eng_mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned mT5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá.
Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)
## Intended uses & limitations
#### How to use
You can use this model with Transformers *pipeline* for MT.
```python
from transformers import MT5ForConditionalGeneration, T5Tokenizer
model = MT5ForConditionalGeneration.from_pretrained("Davlan/mt5_base_eng_yor_mt")
tokenizer = T5Tokenizer.from_pretrained("google/mt5-base")
input_string = "Where are you?"
inputs = tokenizer.encode(input_string, return_tensors="pt")
generated_tokens = model.generate(inputs)
results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(results)
```
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
## Training data
This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset
## Training procedure
This model was trained on a single NVIDIA V100 GPU
## Eval results on Test set (BLEU score)
9.82 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647)
### BibTeX entry and citation info
By David Adelani
```
```
|