File size: 2,068 Bytes
6ecaf69 bbcdb93 6ecaf69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- merge
- mergekit
- lazymergekit
- KoboldAI/LLaMA2-13B-Tiefighter
- abacusai/Giraffe-13b-32k-v3
base_model:
- KoboldAI/LLaMA2-13B-Tiefighter
- abacusai/Giraffe-13b-32k-v3
---
INTERM STEP VERSION:
Step 1 in trying to make Tiefighter 32,768 context.
This version is not usable in current form.
Step 2 however (a linear remerge of Tiefighter with this merge) is however working.
GGUFs are also working... at 32768 context.
Step 2 is here: [DavidAU/D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp](DavidAU/D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp)
# D_AU-Tiefighter-Giraffe-13B-32k-slerp
D_AU-Tiefighter-Giraffe-13B-32k-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter)
* [abacusai/Giraffe-13b-32k-v3](https://huggingface.co/abacusai/Giraffe-13b-32k-v3)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: KoboldAI/LLaMA2-13B-Tiefighter
layer_range: [0, 40]
- model: abacusai/Giraffe-13b-32k-v3
layer_range: [0, 40]
merge_method: slerp
base_model: abacusai/Giraffe-13b-32k-v3
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |