File size: 1,616 Bytes
4ca1bed dd8d2cc 3d5f5ba 4ca1bed 3d5f5ba f88806d 3d5f5ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
library_name: peft
base_model: meta-llama/Llama-2-13b-chat-hf
license: mit
language:
- en
pipeline_tag: text2text-generation
---
# Chadgpt Llama2 13b
## Colab Example
https://colab.research.google.com/drive/1esMSQUSPyQtOY_3DedyQFKBlTrE9A2vM?usp=sharing
## Install Prerequisite
```bash
!pip install -q git+https://github.com/huggingface/peft.git
!pip install transformers
!pip install -U accelerate
!pip install accelerate
!pip install bitsandbytes # Instal bits and bytes for inference of the model
```
## Login Using Huggingface Token
```bash
# You need a huggingface token that can access llama2
!huggingface-cli login
```
## Download Model
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "danjie/Chadgpt-Llama2-13b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
```
## Inference
```python
def talk_with_llm(tweet: str) -> str:
# Encode and move tensor into cuda if applicable.
encoded_input = tokenizer(tweet, return_tensors='pt')
encoded_input = {k: v.to("cuda") for k, v in encoded_input.items()}
output = model.generate(**encoded_input, max_new_tokens=64)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
talk_with_llm("<User> Your sentence \n<Assistant>")
``` |