--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: estudiante_MC318_profesor_MViT_kl_RLVS results: [] --- # estudiante_MC318_profesor_MViT_kl_RLVS This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Accuracy: 0.9829 - F1: 0.9829 - Precision: 0.9831 - Recall: 0.9829 - Roc Auc: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 159 - training_steps: 1590 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 1.1707 | 1.0145 | 79 | 0.3903 | 0.9091 | 0.9091 | 0.9091 | 0.9091 | 0.9760 | | 0.7543 | 2.0289 | 158 | 0.2225 | 0.9358 | 0.9358 | 0.9359 | 0.9358 | 0.9882 | | 0.5018 | 4.0082 | 237 | 0.1346 | 0.9572 | 0.9572 | 0.9577 | 0.9572 | 0.9928 | | 0.3639 | 5.0226 | 316 | 0.0938 | 0.9706 | 0.9706 | 0.9706 | 0.9706 | 0.9945 | | 0.2751 | 7.0019 | 395 | 0.1042 | 0.9706 | 0.9706 | 0.9707 | 0.9706 | 0.9963 | | 0.2243 | 8.0164 | 474 | 0.0650 | 0.9733 | 0.9733 | 0.9735 | 0.9733 | 0.9971 | | 0.1755 | 9.0308 | 553 | 0.0690 | 0.9813 | 0.9813 | 0.9813 | 0.9813 | 0.9980 | | 0.1681 | 11.0101 | 632 | 0.0532 | 0.9866 | 0.9866 | 0.9866 | 0.9866 | 0.9978 | | 0.1581 | 12.0245 | 711 | 0.0432 | 0.9813 | 0.9813 | 0.9813 | 0.9813 | 0.9991 | | 0.1245 | 14.0038 | 790 | 0.0446 | 0.9893 | 0.9893 | 0.9894 | 0.9893 | 0.9986 | | 0.1291 | 15.0182 | 869 | 0.0467 | 0.9866 | 0.9866 | 0.9868 | 0.9866 | 0.9992 | | 0.1057 | 16.0327 | 948 | 0.0427 | 0.9840 | 0.9840 | 0.9842 | 0.9840 | 0.9990 | | 0.1109 | 18.0119 | 1027 | 0.0403 | 0.9840 | 0.9840 | 0.9842 | 0.9840 | 0.9991 | | 0.1039 | 19.0264 | 1106 | 0.0762 | 0.9679 | 0.9679 | 0.9693 | 0.9679 | 0.9989 | | 0.0978 | 21.0057 | 1185 | 0.0393 | 0.9813 | 0.9813 | 0.9813 | 0.9813 | 0.9991 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3