--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: estudiante_MC318_profesor_MViT_akl_RLVS results: [] --- # estudiante_MC318_profesor_MViT_akl_RLVS This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0597 - Accuracy: 0.9803 - F1: 0.9803 - Precision: 0.9803 - Recall: 0.9803 - Roc Auc: 0.9979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 159 - training_steps: 1590 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 22.7945 | 1.0145 | 79 | 0.4204 | 0.8984 | 0.8984 | 0.8985 | 0.8984 | 0.9730 | | 14.8284 | 2.0289 | 158 | 0.2329 | 0.9251 | 0.9251 | 0.9259 | 0.9251 | 0.9836 | | 10.0047 | 4.0082 | 237 | 0.1401 | 0.9492 | 0.9492 | 0.9492 | 0.9492 | 0.9905 | | 7.3642 | 5.0226 | 316 | 0.1023 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9932 | | 5.6128 | 7.0019 | 395 | 0.1193 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9947 | | 4.5908 | 8.0164 | 474 | 0.0743 | 0.9733 | 0.9733 | 0.9735 | 0.9733 | 0.9958 | | 3.4695 | 9.0308 | 553 | 0.0811 | 0.9759 | 0.9759 | 0.9760 | 0.9759 | 0.9968 | | 3.3759 | 11.0101 | 632 | 0.0575 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9975 | | 3.4995 | 12.0245 | 711 | 0.0492 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9982 | | 2.5838 | 14.0038 | 790 | 0.0470 | 0.9840 | 0.9840 | 0.9840 | 0.9840 | 0.9980 | | 2.8276 | 15.0182 | 869 | 0.0544 | 0.9759 | 0.9759 | 0.9761 | 0.9759 | 0.9986 | | 2.3636 | 16.0327 | 948 | 0.0441 | 0.9786 | 0.9786 | 0.9791 | 0.9786 | 0.9989 | | 2.5376 | 18.0119 | 1027 | 0.0431 | 0.9840 | 0.9840 | 0.9842 | 0.9840 | 0.9988 | | 2.3264 | 19.0264 | 1106 | 0.0620 | 0.9706 | 0.9706 | 0.9717 | 0.9706 | 0.9989 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.0.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3