File size: 1,879 Bytes
7b8eb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc457a7
 
7b8eb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b6298
7b8eb2f
25b6298
7b8eb2f
25b6298
dc457a7
7b8eb2f
dc457a7
25b6298
7b8eb2f
 
 
 
 
dc457a7
 
 
 
 
 
 
 
7b8eb2f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7162
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- label_smoothing_factor: 0.05

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5923        | 1.0   | 113  | 1.7310          | 0.44     |
| 1.2071        | 2.0   | 226  | 1.2546          | 0.62     |
| 1.0673        | 3.0   | 339  | 0.9320          | 0.76     |
| 0.8149        | 4.0   | 452  | 0.8768          | 0.81     |
| 0.4999        | 5.0   | 565  | 0.7154          | 0.86     |
| 0.3562        | 6.0   | 678  | 0.6631          | 0.89     |
| 0.3852        | 7.0   | 791  | 0.7136          | 0.87     |
| 0.4476        | 8.0   | 904  | 0.7162          | 0.88     |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3