--- license: mit library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo base_model: DUAL-GPO/phi-2-gpo-new-i0 datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: phi-2-gpo-newSFT-b0.001-renew-30k-i1 results: [] --- # phi-2-gpo-newSFT-b0.001-renew-30k-i1 This model is a fine-tuned version of [DUAL-GPO/phi-2-gpo-new-i0](https://huggingface.co/DUAL-GPO/phi-2-gpo-new-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2