File size: 6,695 Bytes
94d30ab 5a38c5e 94d30ab 5a38c5e 94d30ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
license: mit
datasets:
- custom
metrics:
- mean_squared_error
- mean_absolute_error
- r2_score
model_name: Fertilizer Recommendation System
tags:
- random-forest
- regression
- multioutput
- classification
- agriculture
- soil-nutrients
---
# Fertilizer Application Recommendation System
## Overview
This model predicts the fertilizer requirements for various crops based on input features such as crop type, target yield, field size, and soil properties. It utilizes a combination of Random Forest Regressor and Random Forest Classifier to predict both numerical values (e.g., nutrient needs) and categorical values (e.g., fertilizer application instructions).
## Training Data
The model was trained on a custom dataset containing the following features:
- Crop Name
- Target Yield
- Field Size
- pH (water)
- Organic Carbon
- Total Nitrogen
- Phosphorus (M3)
- Potassium (exch.)
- Soil moisture
The target variables include:
**Numerical Targets**:
- Nitrogen (N) Need
- Phosphorus (P2O5) Need
- Potassium (K2O) Need
- Organic Matter Need
- Lime Need
- Lime Application - Requirement
- Organic Matter Application - Requirement
- 1st Application - Requirement (1)
- 1st Application - Requirement (2)
- 2nd Application - Requirement (1)
**Categorical Targets**:
- Lime Application - Instruction
- Lime Application
- Organic Matter Application - Instruction
- Organic Matter Application
- 1st Application
- 1st Application - Type fertilizer (1)
- 1st Application - Type fertilizer (2)
- 2nd Application
- 2nd Application - Type fertilizer (1)
## Model Training
The model was trained using the following steps:
1. **Data Preprocessing**:
- Handling missing values
- Scaling numerical features using `StandardScaler`
- One-hot encoding categorical features
2. **Modeling**:
- Splitting the dataset into training and testing sets
- Training a `RandomForestRegressor` for numerical targets using a `MultiOutputRegressor`
- Training a `RandomForestClassifier` for categorical targets using a `MultiOutputClassifier`
3. **Evaluation**:
- Evaluating the models using the test set with metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) Score for regression, and accuracy for classification.
## Evaluation Metrics
The model was evaluated using the following metrics:
- Mean Squared Error (MSE)
- Mean Absolute Error (MAE)
- R-squared (R2) Score
- Accuracy for categorical targets
## How to Use
### Input Format
The model expects input data in JSON format with the following fields:
- "Crop Name": String
- "Target Yield": Numeric
- "Field Size": Numeric
- "pH (water)": Numeric
- "Organic Carbon": Numeric
- "Total Nitrogen": Numeric
- "Phosphorus (M3)": Numeric
- "Potassium (exch.)": Numeric
- "Soil moisture": Numeric
### Preprocessing Steps
This script includes:
Loading the models and preprocessor.
Defining the categorical and numerical targets.
Loading the label encoders.
Creating a function make_predictions that processes the input data, makes predictions, and decodes the categorical predictions.
### Inference Procedure
```python
import pandas as pd
from joblib import load
from huggingface_hub import hf_hub_download
from sklearn.preprocessing import LabelEncoder
# Load models and preprocessor
preprocessor_path = hf_hub_download(repo_id='DNgigi/FertiliserApplication', filename='preprocessor.joblib')
numerical_model_path = hf_hub_download(repo_id='DNgigi/FertiliserApplication', filename='numerical_model.joblib')
categorical_model_path = hf_hub_download(repo_id='DNgigi/FertiliserApplication', filename='categorical_model.joblib')
preprocessor = load(preprocessor_path)
numerical_model = load(numerical_model_path)
categorical_model = load(categorical_model_path)
# Define categorical targets
categorical_targets = [
'Lime Application - Instruction',
'Lime Application',
'Organic Matter Application - Instruction',
'Organic Matter Application',
'1st Application',
'1st Application - Type fertilizer (1)',
'1st Application - Type fertilizer (2)',
'2nd Application',
'2nd Application - Type fertilizer (1)',
'1st Application_1',
'1st Application - Type fertilizer (1)_3',
'1st Application - Type fertilizer (2)_5',
'2nd Application_6',
'1st Application_21',
'1st Application - Type fertilizer (1)_23',
'1st Application - Type fertilizer (2)_25',
'2nd Application_26',
'2nd Application - Type fertilizer (1)_28'
]
# Define numerical targets
numerical_targets = [
'Nitrogen (N) Need',
'Phosphorus (P2O5) Need',
'Potassium (K2O) Need',
'Organic Matter Need',
'Lime Need',
'Lime Application - Requirement',
'Organic Matter Application - Requirement',
'1st Application - Requirement (1)',
'1st Application - Requirement (2)',
'2nd Application - Requirement (1)'
]
# Load label encoders
label_encoders = {col: load(hf_hub_download(repo_id='DNgigi/FertiliserApplication', filename=f'label_encoder_{col}.joblib')) for col in categorical_targets}
def make_predictions(input_data):
# Convert input data to DataFrame
input_df = pd.DataFrame([input_data])
# Preprocess the input data
X_transformed = preprocessor.transform(input_df)
# Predict with numerical model
numerical_predictions = numerical_model.predict(X_transformed)
# Predict with categorical model
categorical_predictions_encoded = categorical_model.predict(X_transformed)
# Decode categorical predictions
categorical_predictions_decoded = {}
for i, col in enumerate(categorical_targets):
le = label_encoders[col]
try:
categorical_predictions_decoded[col] = le.inverse_transform(categorical_predictions_encoded[:, i])
except ValueError as e:
categorical_predictions_decoded[col] = ["Unknown"] * len(categorical_predictions_encoded[:, i])
# Combine numerical and categorical predictions into a dictionary
predictions_combined = {col: numerical_predictions[0, i] for i, col in enumerate(numerical_targets)}
predictions_combined.update({col: categorical_predictions_decoded[col][0] for col in categorical_targets})
return predictions_combined
# Example usage
input_data = {
'Crop Name': 'maize(corn)',
'Target Yield': 3600.0,
'Field Size': 1.0,
'pH (water)': 6.1,
'Organic Carbon': 11.4,
'Total Nitrogen': 1.1,
'Phosphorus (M3)': 1.8,
'Potassium (exch.)': 3.0,
'Soil moisture': 20.0
}
predictions = make_predictions(input_data)
print("Predicted Fertilizer Requirements:")
for col, pred_value in predictions.items():
print(f"{col}: {pred_value}")
|