Upload 14 files
Browse files- .gitattributes +1 -0
- README.md +354 -0
- added_tokens.json +5 -0
- config.json +33 -0
- cross.png +0 -0
- generation_config.json +7 -0
- gitattributes +36 -0
- model.safetensors +3 -0
- multi.png +0 -0
- pytorch_model.bin +3 -0
- single.png +0 -0
- special_tokens_map.json +5 -0
- spiece.model +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +37 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
- it
|
8 |
+
widget:
|
9 |
+
- text: The best cough medicine is <extra_id_0> because <extra_id_1>
|
10 |
+
- text: El mejor medicamento para la tos es <extra_id_0> porque <extra_id_1>
|
11 |
+
- text: Le meilleur médicament contre la toux est <extra_id_0> car <extra_id_1
|
12 |
+
- text: La migliore medicina per la tosse è la <extra_id_0> perché la <extra_id_1
|
13 |
+
library_name: transformers
|
14 |
+
pipeline_tag: text2text-generation
|
15 |
+
tags:
|
16 |
+
- medical
|
17 |
+
- multilingual
|
18 |
+
- medic
|
19 |
+
datasets:
|
20 |
+
- HiTZ/Multilingual-Medical-Corpus
|
21 |
+
base_model: google/mt5-large
|
22 |
+
---
|
23 |
+
|
24 |
+
<p align="center">
|
25 |
+
<br>
|
26 |
+
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;">
|
27 |
+
<h2 align="center">Medical mT5: An Open-Source Multilingual Text-to-Text LLM
|
28 |
+
for the Medical Domain</h2>
|
29 |
+
<br>
|
30 |
+
|
31 |
+
|
32 |
+
# Model Card for MedMT5-large
|
33 |
+
|
34 |
+
<p align="justify">
|
35 |
+
We present Medical mT5, the first open-source text-to-text multilingual model for the medical domain.
|
36 |
+
Medical mT5 is an encoder-decoder model developed by continuing the training of publicly available mT5 checkpoints on
|
37 |
+
medical domain data for English, Spanish, French, and Italian.
|
38 |
+
</p>
|
39 |
+
|
40 |
+
- 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain](https://arxiv.org/abs/2404.07613)
|
41 |
+
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
42 |
+
|
43 |
+
|
44 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
45 |
+
<caption>Pre-Training settings for MedMT5.</caption>
|
46 |
+
<thead>
|
47 |
+
<tr>
|
48 |
+
<th></th>
|
49 |
+
<th>Medical mT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
|
50 |
+
<th>Medical mT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
|
51 |
+
</tr>
|
52 |
+
</thead>
|
53 |
+
<tbody>
|
54 |
+
<tr>
|
55 |
+
<td>Param. no.</td>
|
56 |
+
<td>738M</td>
|
57 |
+
<td>3B</td>
|
58 |
+
</tr>
|
59 |
+
<tr>
|
60 |
+
<td>Sequence Length</td>
|
61 |
+
<td>1024</td>
|
62 |
+
<td>480</td>
|
63 |
+
</tr>
|
64 |
+
<tr>
|
65 |
+
<td>Token/step</td>
|
66 |
+
<td>65536</td>
|
67 |
+
<td>30720</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td>Epochs</td>
|
71 |
+
<td>1</td>
|
72 |
+
<td>1</td>
|
73 |
+
</tr>
|
74 |
+
<tr>
|
75 |
+
<td>Total Tokens</td>
|
76 |
+
<td>4.5B</td>
|
77 |
+
<td>4.5B</td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>Optimizer</td>
|
81 |
+
<td>Adafactor</td>
|
82 |
+
<td>Adafactor</td>
|
83 |
+
</tr>
|
84 |
+
<tr>
|
85 |
+
<td>LR</td>
|
86 |
+
<td>0.001</td>
|
87 |
+
<td>0.001</td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td>Scheduler</td>
|
91 |
+
<td>Constant</td>
|
92 |
+
<td>Constant</td>
|
93 |
+
</tr>
|
94 |
+
<tr>
|
95 |
+
<td>Hardware</td>
|
96 |
+
<td>4xA100</td>
|
97 |
+
<td>4xA100</td>
|
98 |
+
</tr>
|
99 |
+
<tr>
|
100 |
+
<td>Time (h)</td>
|
101 |
+
<td>10.5</td>
|
102 |
+
<td>20.5</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td>CO<sub>2</sub>eq (kg)</td>
|
106 |
+
<td>2.9</td>
|
107 |
+
<td>5.6</td>
|
108 |
+
</tr>
|
109 |
+
</tbody>
|
110 |
+
</table>
|
111 |
+
|
112 |
+
|
113 |
+
# Model Description
|
114 |
+
|
115 |
+
- **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello
|
116 |
+
- **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and [Rodrigo Agerri](https://ragerri.github.io/)
|
117 |
+
- **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
118 |
+
- **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
|
119 |
+
- **Model type**: text2text-generation
|
120 |
+
- **Language(s) (NLP)**: English, Spanish, French, Italian
|
121 |
+
- **License**: apache-2.0
|
122 |
+
- **Finetuned from model**: mT5
|
123 |
+
|
124 |
+
## How to Get Started with the Model
|
125 |
+
|
126 |
+
You can load the model using
|
127 |
+
|
128 |
+
```python
|
129 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
130 |
+
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained("HiTZ/Medical-mT5-large")
|
132 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("HiTZ/Medical-mT5-large")
|
133 |
+
```
|
134 |
+
|
135 |
+
The model has been trained using the T5 masked language modelling tasks. You need to finetune the model for your task.
|
136 |
+
|
137 |
+
<p align="center">
|
138 |
+
<br>
|
139 |
+
<img src="https://miro.medium.com/v2/0*yeXSc6Qs-SGKDzZP.png" style="height: 250px;">
|
140 |
+
<br>
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
## Training Data
|
147 |
+
|
148 |
+
|
149 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
150 |
+
<caption>Data sources and word counts by language.</caption>
|
151 |
+
<thead>
|
152 |
+
<tr>
|
153 |
+
<th>Language</th>
|
154 |
+
<th>Source</th>
|
155 |
+
<th>Words</th>
|
156 |
+
</tr>
|
157 |
+
</thead>
|
158 |
+
<tbody>
|
159 |
+
<tr>
|
160 |
+
<td rowspan="3">English</td>
|
161 |
+
<td>ClinicalTrials</td>
|
162 |
+
<td>127.4M</td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td>EMEA</td>
|
166 |
+
<td>12M</td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>PubMed</td>
|
170 |
+
<td>968.4M</td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td rowspan="6">Spanish</td>
|
174 |
+
<td>EMEA</td>
|
175 |
+
<td>13.6M</td>
|
176 |
+
</tr>
|
177 |
+
<tr>
|
178 |
+
<td>PubMed</td>
|
179 |
+
<td>8.4M</td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td>Medical Crawler</td>
|
183 |
+
<td>918M</td>
|
184 |
+
</tr>
|
185 |
+
<tr>
|
186 |
+
<td>SPACC</td>
|
187 |
+
<td>350K</td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td>UFAL</td>
|
191 |
+
<td>10.5M</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>WikiMed</td>
|
195 |
+
<td>5.2M</td>
|
196 |
+
</tr>
|
197 |
+
<tr>
|
198 |
+
<td rowspan="5">French</td>
|
199 |
+
<td>PubMed</td>
|
200 |
+
<td>1.4M</td>
|
201 |
+
</tr>
|
202 |
+
<tr>
|
203 |
+
<td>Science Direct</td>
|
204 |
+
<td>15.2M</td>
|
205 |
+
</tr>
|
206 |
+
<tr>
|
207 |
+
<td>Wikipedia - Médecine</td>
|
208 |
+
<td>5M</td>
|
209 |
+
</tr>
|
210 |
+
<tr>
|
211 |
+
<td>EDP</td>
|
212 |
+
<td>48K</td>
|
213 |
+
</tr>
|
214 |
+
<tr>
|
215 |
+
<td>Google Patents</td>
|
216 |
+
<td>654M</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td rowspan="13">Italian</td>
|
220 |
+
<td>Medical Commoncrawl - IT</td>
|
221 |
+
<td>67M</td>
|
222 |
+
</tr>
|
223 |
+
<tr>
|
224 |
+
<td>Drug instructions</td>
|
225 |
+
<td>30.5M</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td>Wikipedia - Medicina</td>
|
229 |
+
<td>13.3M</td>
|
230 |
+
</tr>
|
231 |
+
<tr>
|
232 |
+
<td>E3C Corpus - IT</td>
|
233 |
+
<td>11.6M</td>
|
234 |
+
</tr>
|
235 |
+
<tr>
|
236 |
+
<td>Medicine descriptions</td>
|
237 |
+
<td>6.3M</td>
|
238 |
+
</tr>
|
239 |
+
<tr>
|
240 |
+
<td>Medical theses</td>
|
241 |
+
<td>5.8M</td>
|
242 |
+
</tr>
|
243 |
+
<tr>
|
244 |
+
<td>Medical websites</td>
|
245 |
+
<td>4M</td>
|
246 |
+
</tr>
|
247 |
+
<tr>
|
248 |
+
<td>PubMed</td>
|
249 |
+
<td>2.3M</td>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<td>Supplement description</td>
|
253 |
+
<td>1.3M</td>
|
254 |
+
</tr>
|
255 |
+
<tr>
|
256 |
+
<td>Medical notes</td>
|
257 |
+
<td>975K</td>
|
258 |
+
</tr>
|
259 |
+
<tr>
|
260 |
+
<td>Pathologies</td>
|
261 |
+
<td>157K</td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td>Medical test simulations</td>
|
265 |
+
<td>26K</td>
|
266 |
+
</tr>
|
267 |
+
<tr>
|
268 |
+
<td>Clinical cases</td>
|
269 |
+
<td>20K</td>
|
270 |
+
</tr>
|
271 |
+
</tbody>
|
272 |
+
</table>
|
273 |
+
|
274 |
+
## Evaluation
|
275 |
+
|
276 |
+
### Medical mT5 for Sequence Labelling
|
277 |
+
|
278 |
+
We have released two Medical mT5 models finetuned for multilingual sequence labelling.
|
279 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
280 |
+
<thead>
|
281 |
+
<tr>
|
282 |
+
<th></th>
|
283 |
+
<th><a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a></th>
|
284 |
+
<th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a></th>
|
285 |
+
<th><a href="https://huggingface.co/HiTZ/Medical-mT5-large-multitask">HiTZ/Medical-mT5-large-multitask</a></th>
|
286 |
+
<th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl-multitask">HiTZ/Medical-mT5-xl-multitask</a></th>
|
287 |
+
</tr>
|
288 |
+
</thead>
|
289 |
+
<tbody>
|
290 |
+
<tr>
|
291 |
+
<td>Param. no.</td>
|
292 |
+
<td>738M</td>
|
293 |
+
<td>3B</td>
|
294 |
+
<td>738M</td>
|
295 |
+
<td>3B</td>
|
296 |
+
</tr>
|
297 |
+
<tr>
|
298 |
+
<td>Task</td>
|
299 |
+
<td>Language Modeling</td>
|
300 |
+
<td>Language Modeling</td>
|
301 |
+
<td>Multitask Sequence Labeling</td>
|
302 |
+
<td>Multitask Sequence Labeling</td>
|
303 |
+
</tr>
|
304 |
+
<tr>
|
305 |
+
</tbody>
|
306 |
+
</table>
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
### Single-task supervised F1 scores for Sequence Labelling
|
312 |
+
<p align="center">
|
313 |
+
<br>
|
314 |
+
<img src="https://huggingface.co/HiTZ/Medical-mT5-large/resolve/main/single.png" style="height: 600px;">
|
315 |
+
<br>
|
316 |
+
|
317 |
+
### Multi-task supervised F1 scores for Sequence Labelling
|
318 |
+
<p align="center">
|
319 |
+
<br>
|
320 |
+
<img src="https://huggingface.co/HiTZ/Medical-mT5-large/resolve/main/multi.png" style="height: 600px;">
|
321 |
+
<br>
|
322 |
+
|
323 |
+
### Zero-shot F1 scores for Argument Mining. Models have been trained in English and evaluated in Spanish, French and Italian.
|
324 |
+
<p align="center">
|
325 |
+
<br>
|
326 |
+
<img src="https://huggingface.co/HiTZ/Medical-mT5-large/resolve/main/cross.png" style="height: 320px;">
|
327 |
+
<br>
|
328 |
+
|
329 |
+
|
330 |
+
## Ethical Statement
|
331 |
+
<p align="justify">
|
332 |
+
Our research in developing Medical mT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge.
|
333 |
+
Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which
|
334 |
+
can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security.
|
335 |
+
To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to
|
336 |
+
data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with
|
337 |
+
privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation.
|
338 |
+
We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future.
|
339 |
+
Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within
|
340 |
+
the research community.
|
341 |
+
</p>
|
342 |
+
|
343 |
+
## Citation
|
344 |
+
|
345 |
+
```bibtext
|
346 |
+
@misc{garcíaferrero2024medical,
|
347 |
+
title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain},
|
348 |
+
author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
|
349 |
+
year={2024},
|
350 |
+
eprint={2404.07613},
|
351 |
+
archivePrefix={arXiv},
|
352 |
+
primaryClass={cs.CL}
|
353 |
+
}
|
354 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 1,
|
3 |
+
"<pad>": 0,
|
4 |
+
"<unk>": 2
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "medT5-large",
|
3 |
+
"architectures": [
|
4 |
+
"MT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_ff": 2816,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 1024,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"is_gated_act": true,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "mt5",
|
20 |
+
"num_decoder_layers": 24,
|
21 |
+
"num_heads": 16,
|
22 |
+
"num_layers": 24,
|
23 |
+
"output_past": true,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"tokenizer_class": "T5Tokenizer",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.34.0",
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 250112
|
33 |
+
}
|
cross.png
ADDED
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.34.0"
|
7 |
+
}
|
gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f0c40c0334550dd3c2502f360bbe8a95712083a1b346d00245f4591c216c61a
|
3 |
+
size 4918393832
|
multi.png
ADDED
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dce96f7d93fea8a747d3abfd724b2c6f56433dcf491d4c757c4e51f5e6c386b
|
3 |
+
size 4918511518
|
single.png
ADDED
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "</s>",
|
3 |
+
"pad_token": "<pad>",
|
4 |
+
"unk_token": "<unk>"
|
5 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
|
3 |
+
size 4309802
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d842e6af904403ce6bf8ee58faffd9abad1682513c28c27454d81dc67eaf296c
|
3 |
+
size 16315149
|
tokenizer_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "</s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<unk>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"additional_special_tokens": [],
|
29 |
+
"clean_up_tokenization_spaces": true,
|
30 |
+
"eos_token": "</s>",
|
31 |
+
"extra_ids": 0,
|
32 |
+
"model_max_length": 1000000000000000019884624838656,
|
33 |
+
"pad_token": "<pad>",
|
34 |
+
"sp_model_kwargs": {},
|
35 |
+
"tokenizer_class": "T5Tokenizer",
|
36 |
+
"unk_token": "<unk>"
|
37 |
+
}
|