File size: 6,081 Bytes
e286bfa
3d63fe3
 
 
 
e286bfa
 
 
 
 
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
 
3d63fe3
23db6f1
 
 
 
 
 
e286bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d63fe3
 
 
 
 
 
 
 
 
 
 
 
 
23db6f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- allknowingroger/Qwenslerp2-14B
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
- VAGOsolutions/SauerkrautLM-v2-14b-DPO
- Qwen/Qwen2.5-14B
- CultriX/Qwen2.5-14B-Wernicke
model-index:
- name: Qwestion-14B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 63.18
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 48.76
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 31.72
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.77
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.22
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.14
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B
      name: Open LLM Leaderboard
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base.

### Models Merged

The following models were included in the merge:
* [allknowingroger/Qwenslerp2-14B](https://huggingface.co/allknowingroger/Qwenslerp2-14B)
* [rombodawg/Rombos-LLM-V2.6-Qwen-14b](https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b)
* [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)
* [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
models:
  - model: CultriX/Qwen2.5-14B-Wernicke
    parameters:
      weight: 0.55         # Backbone model for conversational ability and GPQA
      density: 0.80        # Retain most critical parameters for stability and strength
  - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO
    parameters:
      weight: 0.20         # High IFEval and MMLU-PRO performance with minimized weaknesses
      density: 0.60        # Focus on impactful parameters for specific benchmarks
  - model: rombodawg/Rombos-LLM-V2.6-Qwen-14b
    parameters:
      weight: 0.25         # Enhanced emphasis on reasoning-heavy tasks like MUSR and MATH
      density: 0.70        # Retain reasoning-intensive parameters for improved benchmarks
  - model: allknowingroger/Qwenslerp2-14B
    parameters:
      weight: 0.15         # General stabilizer for consistency across all tasks
      density: 0.65        # Focus on balance and avoiding redundancy
base_model: Qwen/Qwen2.5-14B
merge_method: dare_ties
parameters:
  normalize: true          # Ensure parameter scale consistency
  int8_mask: true          # Optimize for memory and compute efficiency
dtype: bfloat16
tokenizer_source: Qwen/Qwen2.5-14B-Instruct
adaptive_merge_parameters:
  task_weights:
    IFEval: 1.0            # Maintain high IFEval performance
    MATH: 1.3              # Prioritize reasoning and calculation-heavy tasks
    GPQA: 1.1              # Boost factual recall and reasoning accuracy
    MUSR: 1.2              # Enhance logical reasoning and factual understanding
    MMLU-PRO: 1.0          # Retain consistent knowledge representation
  smoothing_factor: 0.15   # Fine-tune blending for stable transitions between tasks
gradient_clipping: 1.0      # Prevent over-contribution from any single model

```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CultriX__Qwestion-14B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |37.63|
|IFEval (0-Shot)    |63.18|
|BBH (3-Shot)       |48.76|
|MATH Lvl 5 (4-Shot)|31.72|
|GPQA (0-shot)      |15.77|
|MuSR (0-shot)      |17.22|
|MMLU-PRO (5-shot)  |49.14|