CultriX commited on
Commit
c625636
·
verified ·
1 Parent(s): 638dbe9

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - merge
4
+ - mergekit
5
+ - lazymergekit
6
+ - Kukedlc/NeuralMaxime-7B-slerp
7
+ - eren23/ogno-monarch-jaskier-merge-7b
8
+ - eren23/dpo-binarized-NeutrixOmnibe-7B
9
+ base_model:
10
+ - Kukedlc/NeuralMaxime-7B-slerp
11
+ - eren23/ogno-monarch-jaskier-merge-7b
12
+ - eren23/dpo-binarized-NeutrixOmnibe-7B
13
+ ---
14
+
15
+ # MonaTrix-v4
16
+
17
+ MonaTrix-v4 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co/Kukedlc/NeuralMaxime-7B-slerp)
19
+ * [eren23/ogno-monarch-jaskier-merge-7b](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b)
20
+ * [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: mistralai/Mistral-7B-v0.1
27
+ # No parameters necessary for base model
28
+ - model: Kukedlc/NeuralMaxime-7B-slerp
29
+ #Emphasize the beginning of Vicuna format models
30
+ parameters:
31
+ weight: 0.36
32
+ density: 0.65
33
+ - model: eren23/ogno-monarch-jaskier-merge-7b
34
+ parameters:
35
+ weight: 0.34
36
+ density: 0.6
37
+ # Vicuna format
38
+ - model: eren23/dpo-binarized-NeutrixOmnibe-7B
39
+ parameters:
40
+ weight: 0.3
41
+ density: 0.6
42
+
43
+ merge_method: dare_ties
44
+ base_model: mistralai/Mistral-7B-v0.1
45
+ parameters:
46
+ int8_mask: true
47
+ dtype: bfloat16
48
+ random_seed: 0
49
+ ```
50
+
51
+ ## 💻 Usage
52
+
53
+ ```python
54
+ !pip install -qU transformers accelerate
55
+
56
+ from transformers import AutoTokenizer
57
+ import transformers
58
+ import torch
59
+
60
+ model = "CultriX/MonaTrix-v4"
61
+ messages = [{"role": "user", "content": "What is a large language model?"}]
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained(model)
64
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
65
+ pipeline = transformers.pipeline(
66
+ "text-generation",
67
+ model=model,
68
+ torch_dtype=torch.float16,
69
+ device_map="auto",
70
+ )
71
+
72
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
73
+ print(outputs[0]["generated_text"])
74
+ ```