File size: 1,533 Bytes
2bebe0c 65a5134 2bebe0c 65a5134 2bebe0c 65a5134 2bebe0c 65a5134 2bebe0c 65a5134 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
base_model: Crystalcareai/Qwen-1.5-8x7B #this is the raw (random gated) model straight out of mergekit. Change this to "Crystalcareai/Qwen1.5-8x7b" for training SFT'd model.
model_type: Qwen2ForCausalLM #don't use HF auto config
tokenizer_type: Qwen2Tokenizer #don't use HF auto config
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true #Mixtral models still chug vram in axolotl, so qlora is required at the moment.
strict: false
datasets:
- path: Crystalcareai/MoD
type: sharegpt
dataset_prepared_path: last_run_prepared #preprocess your dataset for easier vram: "python -m axolotl.cli.preprocess examples/Qwen/YOURCONFIG.yml"
val_set_size: 0.0
output_dir: ./qlora-out
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002 # anything from 2-5 is acceptable
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 4
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens: |