--- base_model: yanolja/EEVE-Korean-Instruct-10.8B-v1.0 inference: false language: - ko library_name: transformers license: apache-2.0 pipeline_tag: text-generation --- # EEVE-Korean-Instruct-10.8B-v1.0-AWQ - Model creator: [Yanolja](https://huggingface.co/yanolja) - Original model: [yanolja/EEVE-Korean-Instruct-10.8B-v1.0](https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0) ## Description This repo contains AWQ model files for [yanolja/EEVE-Korean-Instruct-10.8B-v1.0](https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Using OpenAI Chat API with vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. #### Start the OpenAI-Compatible Server: - vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API ```shell python3 -m vllm.entrypoints.openai.api_server --model Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ --quantization awq --dtype half ``` - --model: huggingface model path - --quantization: ”awq” - --dtype: “half” for FP16. Recommended for AWQ quantization. #### Querying the model using OpenAI Chat API: - You can use the create chat completion endpoint to communicate with the model in a chat-like interface: ```shell curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ", "messages": [ {"role": "system", "content": "당신은 사용자의 질문에 친절하게 답변하는 어시스턴트입니다."}, {"role": "user", "content": "괜스레 슬퍼서 눈물이 나면 어떻게 하나요?"} ] }' ``` #### Python Client Example: - Using the openai python package, you can also communicate with the model in a chat-like manner: ```python from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Copycats/EEVE-Korean-Instruct-10.8B-v1.0-AWQ", messages=[ {"role": "system", "content": "당신은 사용자의 질문에 친절하게 답변하는 어시스턴트입니다."}, {"role": "user", "content": "괜스레 슬퍼서 눈물이 나면 어떻게 하나요?"}, ] ) print("Chat response:", chat_response) ```