--- language: - zh license: apache-2.0 tags: - mt5-small - text2text-generation - natural language generation - conversational system - task-oriented dialog datasets: - ConvLab/crosswoz metrics: - Slot Error Rate - sacrebleu model-index: - name: mt5-small-nlg-all-crosswoz results: - task: type: text2text-generation name: natural language generation dataset: type: ConvLab/crosswoz name: CrossWOZ split: test revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0 metrics: - type: Slot Error Rate value: 6.9 name: SER - type: sacrebleu value: 21.0 name: BLEU widget: - text: "[Inform][酒店]([价格][100-200元],[评分][5分]);[greet][General]([][]);[Request][酒店]([名称][])\n\nuser: " - text: "[Recommend][酒店]([名称][北京京仪大酒店],[名称][北京贵都大酒店]);[Inform][酒店]([酒店设施-健身房-否][]);[NoOffer][酒店]([][])\n\nsystem: " inference: parameters: max_length: 100 --- # mt5-small-nlg-all-crosswoz This model is a fine-tuned version of [mt5-small](https://huggingface.co/mt5-small) on [CrossWOZ](https://huggingface.co/datasets/ConvLab/crosswoz) both user and system utterances. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1