ChrisGeishauser
commited on
Commit
·
9008d50
1
Parent(s):
43fdfbe
Upload 3 files
Browse files- .gitattributes +1 -0
- config_saved.json +1 -0
- supervised.pol.mdl +3 -0
- train_INFO.log +345 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
supervised.pol.mdl filter=lfs diff=lfs merge=lfs -text
|
config_saved.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"args": {"seed": 0, "eval_freq": 2, "dataset_name": "multiwoz21", "model_path": "experiments/seed0/save/supervised.pol.mdl"}, "config": {"batchsz": 64, "epoch": 40, "gamma": 0.99, "policy_lr": 5e-06, "supervised_lr": 1e-05, "entropy_weight": 0.01, "value_lr": 0.0001, "save_dir": "save", "log_dir": "log", "save_per_epoch": 5000, "hidden_size": 256, "load": "save/best", "logging_mode": "INFO", "use_cer": true, "memory_size": 5000, "behaviour_cloning_weight": 0.1, "supervised_weight": 0.0, "online_offline_ratio": 0.2, "smoothed_value_function": false, "use_reservoir_sampling": false, "seed": 0, "lambda": 1, "tau": 0.001, "policy_freq": 1, "print_per_batch": 400, "c": 1.0, "rho_bar": 1, "max_length": 10, "noisy_linear": false, "dataset_name": "multiwoz21", "data_percentage": 0.01, "dialogue_order": 0, "multiwoz_like": false, "regularization_weight": 0.0, "enc_input_dim": 128, "enc_nhead": 2, "enc_d_hid": 128, "enc_nlayers": 4, "enc_dropout": 0.1, "dec_input_dim": 128, "dec_nhead": 2, "dec_d_hid": 128, "dec_nlayers": 2, "dec_dropout": 0.0, "action_embedding_dim": 128, "domain_embedding_dim": 64, "value_embedding_dim": 12, "node_embedding_dim": 128, "roberta_path": "", "node_attention": true, "semantic_descriptions": true, "freeze_roberta": true, "use_pooled": false, "mean": true, "roberta_actions": true, "independent_descriptions": true, "random_matrix": false, "distance_metric": false, "verbose": false, "ignore_features": [], "domains_removed": ["hospital", "police", "train", "hotel", "attraction", "taxi"], "only_active_values": false, "permuted_data": false, "need_weights": false, "cls_dim": 128, "independent": true, "old_critic": false, "pos_weight": 5, "weight_decay": 1e-05}, "policy_config": null}
|
supervised.pol.mdl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:167f64fd660907849c157f0423778600b6613ce4c6fc98247484c0e279b36206
|
3 |
+
size 9331458
|
train_INFO.log
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Visible device: cuda
|
2 |
+
Seed used: 0
|
3 |
+
Batch size: 64
|
4 |
+
Epochs: 40
|
5 |
+
Learning rate: 1e-05
|
6 |
+
Entropy weight: 0.01
|
7 |
+
Regularization weight: 0.0
|
8 |
+
Only use multiwoz like domains: False
|
9 |
+
We use: 1.0% of the data
|
10 |
+
Dialogue order used: 0
|
11 |
+
Vectorizer: Data set used is multiwoz21
|
12 |
+
We filter state by active domains: True
|
13 |
+
Vectorizer: Data set used is multiwoz21
|
14 |
+
Embedding semantic descriptions: True
|
15 |
+
Embedded descriptions successfully. Size: torch.Size([338, 768])
|
16 |
+
Data set used for descriptions: multiwoz21
|
17 |
+
We use Roberta to embed actions.
|
18 |
+
Loaded model from experiments/seed0/save/supervised.pol.mdl
|
19 |
+
Start training
|
20 |
+
Epoch: 0
|
21 |
+
Average actions: 1.9973957538604736
|
22 |
+
Average target actions: 2.5520834922790527
|
23 |
+
Precision: 0.09615384615384616
|
24 |
+
Recall: 0.07462686567164178
|
25 |
+
F1: 0.08403361344537816
|
26 |
+
<<dialog policy>> epoch 0: saved network to mdl
|
27 |
+
Best Precision: 0.09615384615384616
|
28 |
+
Best Recall: 0.07462686567164178
|
29 |
+
Best F1: 0.08403361344537816
|
30 |
+
Epoch: 1
|
31 |
+
Precision: 0.09615384615384616
|
32 |
+
Recall: 0.07462686567164178
|
33 |
+
F1: 0.08403361344537816
|
34 |
+
Best Precision: 0.09615384615384616
|
35 |
+
Best Recall: 0.07462686567164178
|
36 |
+
Best F1: 0.08403361344537816
|
37 |
+
Epoch: 2
|
38 |
+
Average actions: 2.3515625
|
39 |
+
Average target actions: 2.6197917461395264
|
40 |
+
Precision: 0.10526315789473684
|
41 |
+
Recall: 0.08955223880597014
|
42 |
+
F1: 0.0967741935483871
|
43 |
+
<<dialog policy>> epoch 2: saved network to mdl
|
44 |
+
Best Precision: 0.10526315789473684
|
45 |
+
Best Recall: 0.08955223880597014
|
46 |
+
Best F1: 0.0967741935483871
|
47 |
+
Epoch: 3
|
48 |
+
Precision: 0.10526315789473684
|
49 |
+
Recall: 0.08955223880597014
|
50 |
+
F1: 0.0967741935483871
|
51 |
+
Best Precision: 0.10526315789473684
|
52 |
+
Best Recall: 0.08955223880597014
|
53 |
+
Best F1: 0.0967741935483871
|
54 |
+
Epoch: 4
|
55 |
+
Average actions: 1.6770832538604736
|
56 |
+
Average target actions: 2.8567709922790527
|
57 |
+
Precision: 0.1347517730496454
|
58 |
+
Recall: 0.0945273631840796
|
59 |
+
F1: 0.11111111111111112
|
60 |
+
<<dialog policy>> epoch 4: saved network to mdl
|
61 |
+
Best Precision: 0.1347517730496454
|
62 |
+
Best Recall: 0.0945273631840796
|
63 |
+
Best F1: 0.11111111111111112
|
64 |
+
Epoch: 5
|
65 |
+
Precision: 0.1347517730496454
|
66 |
+
Recall: 0.0945273631840796
|
67 |
+
F1: 0.11111111111111112
|
68 |
+
Best Precision: 0.1347517730496454
|
69 |
+
Best Recall: 0.0945273631840796
|
70 |
+
Best F1: 0.11111111111111112
|
71 |
+
Epoch: 6
|
72 |
+
Average actions: 1.9088542461395264
|
73 |
+
Average target actions: 2.7213542461395264
|
74 |
+
Precision: 0.12080536912751678
|
75 |
+
Recall: 0.08955223880597014
|
76 |
+
F1: 0.10285714285714286
|
77 |
+
Best Precision: 0.1347517730496454
|
78 |
+
Best Recall: 0.0945273631840796
|
79 |
+
Best F1: 0.11111111111111112
|
80 |
+
Epoch: 7
|
81 |
+
Precision: 0.12080536912751678
|
82 |
+
Recall: 0.08955223880597014
|
83 |
+
F1: 0.10285714285714286
|
84 |
+
Best Precision: 0.1347517730496454
|
85 |
+
Best Recall: 0.0945273631840796
|
86 |
+
Best F1: 0.11111111111111112
|
87 |
+
Epoch: 8
|
88 |
+
Average actions: 2.0572915077209473
|
89 |
+
Average target actions: 2.8229167461395264
|
90 |
+
Precision: 0.12903225806451613
|
91 |
+
Recall: 0.09950248756218906
|
92 |
+
F1: 0.11235955056179776
|
93 |
+
<<dialog policy>> epoch 8: saved network to mdl
|
94 |
+
Best Precision: 0.1347517730496454
|
95 |
+
Best Recall: 0.09950248756218906
|
96 |
+
Best F1: 0.11235955056179776
|
97 |
+
Epoch: 9
|
98 |
+
Precision: 0.12903225806451613
|
99 |
+
Recall: 0.09950248756218906
|
100 |
+
F1: 0.11235955056179776
|
101 |
+
Best Precision: 0.1347517730496454
|
102 |
+
Best Recall: 0.09950248756218906
|
103 |
+
Best F1: 0.11235955056179776
|
104 |
+
Epoch: 10
|
105 |
+
Average actions: 2.0911459922790527
|
106 |
+
Average target actions: 2.6875
|
107 |
+
Precision: 0.11612903225806452
|
108 |
+
Recall: 0.08955223880597014
|
109 |
+
F1: 0.10112359550561797
|
110 |
+
Best Precision: 0.1347517730496454
|
111 |
+
Best Recall: 0.09950248756218906
|
112 |
+
Best F1: 0.11235955056179776
|
113 |
+
Epoch: 11
|
114 |
+
Precision: 0.11612903225806452
|
115 |
+
Recall: 0.08955223880597014
|
116 |
+
F1: 0.10112359550561797
|
117 |
+
Best Precision: 0.1347517730496454
|
118 |
+
Best Recall: 0.09950248756218906
|
119 |
+
Best F1: 0.11235955056179776
|
120 |
+
Epoch: 12
|
121 |
+
Average actions: 2.0833332538604736
|
122 |
+
Average target actions: 2.5859375
|
123 |
+
Precision: 0.11976047904191617
|
124 |
+
Recall: 0.09950248756218906
|
125 |
+
F1: 0.10869565217391305
|
126 |
+
Best Precision: 0.1347517730496454
|
127 |
+
Best Recall: 0.09950248756218906
|
128 |
+
Best F1: 0.11235955056179776
|
129 |
+
Epoch: 13
|
130 |
+
Precision: 0.11976047904191617
|
131 |
+
Recall: 0.09950248756218906
|
132 |
+
F1: 0.10869565217391305
|
133 |
+
Best Precision: 0.1347517730496454
|
134 |
+
Best Recall: 0.09950248756218906
|
135 |
+
Best F1: 0.11235955056179776
|
136 |
+
Epoch: 14
|
137 |
+
Average actions: 2.1119790077209473
|
138 |
+
Average target actions: 2.7213542461395264
|
139 |
+
Precision: 0.16778523489932887
|
140 |
+
Recall: 0.12437810945273632
|
141 |
+
F1: 0.14285714285714285
|
142 |
+
<<dialog policy>> epoch 14: saved network to mdl
|
143 |
+
Best Precision: 0.16778523489932887
|
144 |
+
Best Recall: 0.12437810945273632
|
145 |
+
Best F1: 0.14285714285714285
|
146 |
+
Epoch: 15
|
147 |
+
Precision: 0.16778523489932887
|
148 |
+
Recall: 0.12437810945273632
|
149 |
+
F1: 0.14285714285714285
|
150 |
+
Best Precision: 0.16778523489932887
|
151 |
+
Best Recall: 0.12437810945273632
|
152 |
+
Best F1: 0.14285714285714285
|
153 |
+
Epoch: 16
|
154 |
+
Average actions: 1.7994792461395264
|
155 |
+
Average target actions: 2.5520834922790527
|
156 |
+
Precision: 0.10135135135135136
|
157 |
+
Recall: 0.07462686567164178
|
158 |
+
F1: 0.08595988538681948
|
159 |
+
Best Precision: 0.16778523489932887
|
160 |
+
Best Recall: 0.12437810945273632
|
161 |
+
Best F1: 0.14285714285714285
|
162 |
+
Epoch: 17
|
163 |
+
Precision: 0.10135135135135136
|
164 |
+
Recall: 0.07462686567164178
|
165 |
+
F1: 0.08595988538681948
|
166 |
+
Best Precision: 0.16778523489932887
|
167 |
+
Best Recall: 0.12437810945273632
|
168 |
+
Best F1: 0.14285714285714285
|
169 |
+
Epoch: 18
|
170 |
+
Average actions: 2.0572915077209473
|
171 |
+
Average target actions: 2.7552084922790527
|
172 |
+
Precision: 0.13548387096774195
|
173 |
+
Recall: 0.1044776119402985
|
174 |
+
F1: 0.11797752808988765
|
175 |
+
Best Precision: 0.16778523489932887
|
176 |
+
Best Recall: 0.12437810945273632
|
177 |
+
Best F1: 0.14285714285714285
|
178 |
+
Epoch: 19
|
179 |
+
Precision: 0.13548387096774195
|
180 |
+
Recall: 0.1044776119402985
|
181 |
+
F1: 0.11797752808988765
|
182 |
+
Best Precision: 0.16778523489932887
|
183 |
+
Best Recall: 0.12437810945273632
|
184 |
+
Best F1: 0.14285714285714285
|
185 |
+
Epoch: 20
|
186 |
+
Average actions: 1.9661457538604736
|
187 |
+
Average target actions: 2.7213542461395264
|
188 |
+
Precision: 0.1118421052631579
|
189 |
+
Recall: 0.0845771144278607
|
190 |
+
F1: 0.0963172804532578
|
191 |
+
Best Precision: 0.16778523489932887
|
192 |
+
Best Recall: 0.12437810945273632
|
193 |
+
Best F1: 0.14285714285714285
|
194 |
+
Epoch: 21
|
195 |
+
Precision: 0.1118421052631579
|
196 |
+
Recall: 0.0845771144278607
|
197 |
+
F1: 0.0963172804532578
|
198 |
+
Best Precision: 0.16778523489932887
|
199 |
+
Best Recall: 0.12437810945273632
|
200 |
+
Best F1: 0.14285714285714285
|
201 |
+
Epoch: 22
|
202 |
+
Average actions: 1.9557292461395264
|
203 |
+
Average target actions: 2.5520834922790527
|
204 |
+
Precision: 0.07741935483870968
|
205 |
+
Recall: 0.05970149253731343
|
206 |
+
F1: 0.06741573033707865
|
207 |
+
Best Precision: 0.16778523489932887
|
208 |
+
Best Recall: 0.12437810945273632
|
209 |
+
Best F1: 0.14285714285714285
|
210 |
+
Epoch: 23
|
211 |
+
Precision: 0.07741935483870968
|
212 |
+
Recall: 0.05970149253731343
|
213 |
+
F1: 0.06741573033707865
|
214 |
+
Best Precision: 0.16778523489932887
|
215 |
+
Best Recall: 0.12437810945273632
|
216 |
+
Best F1: 0.14285714285714285
|
217 |
+
Epoch: 24
|
218 |
+
Average actions: 2.0833334922790527
|
219 |
+
Average target actions: 2.8229167461395264
|
220 |
+
Precision: 0.09090909090909091
|
221 |
+
Recall: 0.06965174129353234
|
222 |
+
F1: 0.07887323943661972
|
223 |
+
Best Precision: 0.16778523489932887
|
224 |
+
Best Recall: 0.12437810945273632
|
225 |
+
Best F1: 0.14285714285714285
|
226 |
+
Epoch: 25
|
227 |
+
Precision: 0.09090909090909091
|
228 |
+
Recall: 0.06965174129353234
|
229 |
+
F1: 0.07887323943661972
|
230 |
+
Best Precision: 0.16778523489932887
|
231 |
+
Best Recall: 0.12437810945273632
|
232 |
+
Best F1: 0.14285714285714285
|
233 |
+
Epoch: 26
|
234 |
+
Average actions: 1.7135417461395264
|
235 |
+
Average target actions: 2.6197917461395264
|
236 |
+
Precision: 0.145985401459854
|
237 |
+
Recall: 0.09950248756218906
|
238 |
+
F1: 0.1183431952662722
|
239 |
+
Best Precision: 0.16778523489932887
|
240 |
+
Best Recall: 0.12437810945273632
|
241 |
+
Best F1: 0.14285714285714285
|
242 |
+
Epoch: 27
|
243 |
+
Precision: 0.145985401459854
|
244 |
+
Recall: 0.09950248756218906
|
245 |
+
F1: 0.1183431952662722
|
246 |
+
Best Precision: 0.16778523489932887
|
247 |
+
Best Recall: 0.12437810945273632
|
248 |
+
Best F1: 0.14285714285714285
|
249 |
+
Epoch: 28
|
250 |
+
Average actions: 2.0364584922790527
|
251 |
+
Average target actions: 2.5520834922790527
|
252 |
+
Precision: 0.16891891891891891
|
253 |
+
Recall: 0.12437810945273632
|
254 |
+
F1: 0.14326647564469916
|
255 |
+
<<dialog policy>> epoch 28: saved network to mdl
|
256 |
+
Best Precision: 0.16891891891891891
|
257 |
+
Best Recall: 0.12437810945273632
|
258 |
+
Best F1: 0.14326647564469916
|
259 |
+
Epoch: 29
|
260 |
+
Precision: 0.16891891891891891
|
261 |
+
Recall: 0.12437810945273632
|
262 |
+
F1: 0.14326647564469916
|
263 |
+
Best Precision: 0.16891891891891891
|
264 |
+
Best Recall: 0.12437810945273632
|
265 |
+
Best F1: 0.14326647564469916
|
266 |
+
Epoch: 30
|
267 |
+
Average actions: 2.0026040077209473
|
268 |
+
Average target actions: 2.3828125
|
269 |
+
Precision: 0.16216216216216217
|
270 |
+
Recall: 0.11940298507462686
|
271 |
+
F1: 0.13753581661891118
|
272 |
+
Best Precision: 0.16891891891891891
|
273 |
+
Best Recall: 0.12437810945273632
|
274 |
+
Best F1: 0.14326647564469916
|
275 |
+
Epoch: 31
|
276 |
+
Precision: 0.16216216216216217
|
277 |
+
Recall: 0.11940298507462686
|
278 |
+
F1: 0.13753581661891118
|
279 |
+
Best Precision: 0.16891891891891891
|
280 |
+
Best Recall: 0.12437810945273632
|
281 |
+
Best F1: 0.14326647564469916
|
282 |
+
Epoch: 32
|
283 |
+
Average actions: 1.8046875
|
284 |
+
Average target actions: 2.6875
|
285 |
+
Precision: 0.12142857142857143
|
286 |
+
Recall: 0.0845771144278607
|
287 |
+
F1: 0.09970674486803519
|
288 |
+
Best Precision: 0.16891891891891891
|
289 |
+
Best Recall: 0.12437810945273632
|
290 |
+
Best F1: 0.14326647564469916
|
291 |
+
Epoch: 33
|
292 |
+
Precision: 0.12142857142857143
|
293 |
+
Recall: 0.0845771144278607
|
294 |
+
F1: 0.09970674486803519
|
295 |
+
Best Precision: 0.16891891891891891
|
296 |
+
Best Recall: 0.12437810945273632
|
297 |
+
Best F1: 0.14326647564469916
|
298 |
+
Epoch: 34
|
299 |
+
Average actions: 1.9348957538604736
|
300 |
+
Average target actions: 2.6875
|
301 |
+
Precision: 0.12162162162162163
|
302 |
+
Recall: 0.08955223880597014
|
303 |
+
F1: 0.10315186246418337
|
304 |
+
Best Precision: 0.16891891891891891
|
305 |
+
Best Recall: 0.12437810945273632
|
306 |
+
Best F1: 0.14326647564469916
|
307 |
+
Epoch: 35
|
308 |
+
Precision: 0.12162162162162163
|
309 |
+
Recall: 0.08955223880597014
|
310 |
+
F1: 0.10315186246418337
|
311 |
+
Best Precision: 0.16891891891891891
|
312 |
+
Best Recall: 0.12437810945273632
|
313 |
+
Best F1: 0.14326647564469916
|
314 |
+
Epoch: 36
|
315 |
+
Average actions: 2.0989584922790527
|
316 |
+
Average target actions: 2.484375
|
317 |
+
Precision: 0.14743589743589744
|
318 |
+
Recall: 0.11442786069651742
|
319 |
+
F1: 0.1288515406162465
|
320 |
+
Best Precision: 0.16891891891891891
|
321 |
+
Best Recall: 0.12437810945273632
|
322 |
+
Best F1: 0.14326647564469916
|
323 |
+
Epoch: 37
|
324 |
+
Precision: 0.14743589743589744
|
325 |
+
Recall: 0.11442786069651742
|
326 |
+
F1: 0.1288515406162465
|
327 |
+
Best Precision: 0.16891891891891891
|
328 |
+
Best Recall: 0.12437810945273632
|
329 |
+
Best F1: 0.14326647564469916
|
330 |
+
Epoch: 38
|
331 |
+
Average actions: 2.0260415077209473
|
332 |
+
Average target actions: 2.5520834922790527
|
333 |
+
Precision: 0.1456953642384106
|
334 |
+
Recall: 0.10945273631840796
|
335 |
+
F1: 0.12499999999999997
|
336 |
+
Best Precision: 0.16891891891891891
|
337 |
+
Best Recall: 0.12437810945273632
|
338 |
+
Best F1: 0.14326647564469916
|
339 |
+
Epoch: 39
|
340 |
+
Precision: 0.1456953642384106
|
341 |
+
Recall: 0.10945273631840796
|
342 |
+
F1: 0.12499999999999997
|
343 |
+
Best Precision: 0.16891891891891891
|
344 |
+
Best Recall: 0.12437810945273632
|
345 |
+
Best F1: 0.14326647564469916
|