--- license: llama3.1 datasets: - nvidia/OpenMathInstruct-2 language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct model-index: - name: Control-LLM-Llama3.1-8B-Math16 results: - task: type: math-evaluation dataset: type: parquet name: Math, Math Hard, GSM8K dataset_kwargs: data_files: "https://github.com/linkedin/ControlLLM/blob/main/src/controlllm/inference/llm_eval_harness/additional_tasks/math/joined_math.parquet" metrics: - name: exact_match,none type: exact_match value: 0.6205678398534606 stderr: 0.005249520342473376 verified: false - name: exact_match,none (gsm8k_0shot_instruct) type: exact_match value: 0.8968915845337376 stderr: 0.008376436987507811 verified: false - name: exact_match,none (meta_math_0shot_instruct) type: exact_match value: 0.6166 stderr: 0.006876797660918556 verified: false - name: exact_match,none (meta_math_hard_0shot_instruct) type: exact_match value: 0.36027190332326287 stderr: 0.013198755610252931 verified: false - task: type: original-capability dataset: type: meta/Llama-3.1-8B-Instruct-evals name: Llama-3.1-8B-Instruct-evals Dataset dataset_path: "meta-llama/llama-3.1-8_b-instruct-evals" dataset_name: "Llama-3.1-8B-Instruct-evals__arc_challenge__details" metrics: - name: exact_match,strict-match type: exact_match value: 0.6001372485281902 stderr: 0.002821514831773572 verified: false - name: exact_match,strict-match (meta_arc_0shot_instruct) type: exact_match value: 0.8248927038626609 stderr: 0.011139722235859526 verified: false - name: exact_match,strict-match (meta_gpqa_0shot_cot_instruct) type: exact_match value: 0.3080357142857143 stderr: 0.021836780796366417 verified: false - name: exact_match,strict-match (meta_mmlu_0shot_instruct) type: exact_match value: 0.7159948725252813 stderr: 0.00380556397209409 verified: false - name: exact_match,strict-match (meta_mmlu_pro_5shot_instruct) type: exact_match value: 0.45403922872340424 stderr: 0.004539171007529716 verified: false library_name: transformers pipeline_tag: text-generation --- # Control-LLM-Llama3.1-8B-Math16 This is a fine-tuned model of Llama-3.1-8B-Instruct for mathematical tasks on OpenMath2 dataset. ## Linked Paper This model is associated with the paper: [Control-LLM](https://huggingface.co/papers/2501.10979). ## Linked Open Source code - training, eval and benchmark This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM). ## Evaluation Results Here is an overview of the evaluation results and findings: ### Benchmark Results Table The table below summarizes evaluation results across mathematical tasks and original capabilities. | **Model** | **MH** | **M** | **G8K** | **M-Avg** | **ARC** | **GPQA** | **MLU** | **MLUP** | **O-Avg** | **Overall** | |-------------------|--------|--------|---------|-----------|---------|----------|---------|----------|-----------|-------------| | Llama3.1-8B-Inst | 23.7 | 50.9 | 85.6 | 52.1 | 83.4 | 29.9 | 72.4 | 46.7 | 60.5 | 56.3 | | **Control LLM*** | 36.0 | 61.7 | **89.7**| 62.5 | 82.5 | 30.8 | **71.6**| 45.4 | **57.6** | **60.0** | --- ### Explanation: - **MH**: MathHard - **M**: Math - **G8K**: GSM8K - **M-Avg**: Math - Average across MathHard, Math, and GSM8K - **ARC**: ARC benchmark - **GPQA**: General knowledge QA - **MLU**: MMLU (Massive Multitask Language Understanding) - **MLUP**: MMLU Pro - **O-Avg**: Original Capability - Average across ARC, GPQA, MMLU, and MLUP - **Overall**: Combined average across all tasks ### Catastrophic Forgetting on OpenMath The following plot illustrates and compares catastrophic forgetting mitigation during training ![Catastrophic Forgetting](plots/ControlLLM_CF_Plot_Math.png) ### Alignment Result The plot below highlights the alignment result of the model trained with Control LLM. ![Alignment](plots/alignment_best.png)