CHEMISTral7Bv0.3 / finetune /mixed_precision.py
Clemspace's picture
Initial model upload
cb9e677
from typing import Iterable
import torch
def prepare_mixed_precision(
params: Iterable[torch.nn.Parameter],
param_dtype: torch.dtype,
optim_dtype: torch.dtype,
):
"""Appends a freshly allocated fp32 tensor copy of all params to parameters that can be updated."""
with torch.no_grad():
for p in params:
if p.requires_grad:
# Mixed precision: let's save a fp32 param tensor to each params that require a grad
p._mp_param = torch.empty_like(p, dtype=optim_dtype) # type: ignore
p._mp_param.copy_(p.to(optim_dtype)) # type: ignore
p.data = p.data.to(param_dtype)
def upcast_mixed_precision(
params: Iterable[torch.nn.Parameter], optim_dtype: torch.dtype
):
"""Make sure to run this function BEFORE optimizer.step() so that all weights and optimizer states are updated in fp32 in .step()"""
with torch.no_grad():
for p in params:
if p.requires_grad and p.grad is not None:
# store original tensor in p._temp
p._temp = p.data # type: ignore
# upcast data for the optimizer step
p.data = p._mp_param # type: ignore
p.grad = p.grad.to(optim_dtype)
def downcast_mixed_precision(
params: Iterable[torch.nn.Parameter], param_dtype: torch.dtype
):
"""Make sure to run this function AFTER optimizer.step() as optimizer.step() will update data underlying p.data and p._mp_param pointers"""
with torch.no_grad():
for p in params:
if p.requires_grad and p.grad is not None:
# copy fp32 weights into bfloat16 tensor
p._temp.copy_(p.data) # type: ignore
# set _temp again to the data tensor
p.data = p._temp # type: ignore
p.grad = p.grad.to(param_dtype)