File size: 7,283 Bytes
32fe622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.responses import JSONResponse, FileResponse
from pydantic import BaseModel
from typing import Optional
import subprocess
import os
import logging
from inference_transform import process_smiles, process_pdb, process_sdf, extract_and_convert_to_sdf, is_valid_smiles

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=['*'],
    allow_headers=['*']
)

sdf_file_path = "/root/CHEMISTral7Bv0.3/example/Conformer3D_COMPOUND_CID_240.sdf"

class InferenceRequest(BaseModel):
    prompt: str
    max_tokens: int = 256
    temperature: float = 1.0

@app.post("/predict_base")
async def predict_base(
    prompt: str = Form(...),
    max_tokens: int = Form(256),
    temperature: float = Form(1.0),
    file: Optional[UploadFile] = File(None)
):
    try:
        if file:
            file_path = f"/tmp/{file.filename}"
            with open(file_path, "wb") as f:
                f.write(file.file.read())
            if file.filename.endswith(".pdb"):
                prompt += f" {process_pdb(file_path)}"
            elif file.filename.endswith(".sdf"):
                prompt += f" {process_sdf(file_path)}"
        else:
            try:
                sdf_file = extract_and_convert_to_sdf(prompt)
                if sdf_file:
                    prompt += f" {sdf_file}"
            except ValueError as e:
                logger.info(str(e))

        command = [
            "python",
            "/root/CHEMISTral7Bv0.3/mistral_chat_script.py",
            "/root/mistral_models/7B-v0.3/",
            prompt,
            f"--max_tokens={max_tokens}",
            f"--temperature={temperature}",
            "--instruct"
        ]

        logger.info(f"Running command: {' '.join(command)}")
        result = subprocess.run(command, capture_output=True, text=True)
        
        if result.returncode != 0:
            logger.error(f"Command failed with return code {result.returncode}")
            logger.error(f"stderr: {result.stderr}")
            raise HTTPException(status_code=500, detail=result.stderr)
        
        response = result.stdout.strip()
        sdf_file_path = "/root/CHEMISTral7Bv0.3/example/Conformer3D_COMPOUND_CID_240.sdf"

        return {
            "response": response,
            "sdf_file_path": sdf_file_path
        }
    except Exception as e:
        logger.exception("Exception occurred during inference.")
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/predict")
async def predict_alternative(
    prompt: str = Form(...),
    max_tokens: int = Form(256),
    temperature: float = Form(1.0),
    file: Optional[UploadFile] = File(None)
):
    try:
        if file:
            file_path = f"/tmp/{file.filename}"
            with open(file_path, "wb") as f:
                f.write(await file.read())
            if file.filename.endswith(".pdb"):
                prompt += f" {process_pdb(file_path)}"
            elif file.filename.endswith(".sdf"):
                prompt += f" {process_sdf(file_path)}"
        else:
            try:
                sdf_file = extract_and_convert_to_sdf(prompt)
                if sdf_file:
                    prompt += f" {sdf_file}"
            except ValueError as e:
                logger.info(str(e))

        command = [
            "python",
            "/root/CHEMISTral7Bv0.3/mistral_chat_script.py",
            "/root/mistral_models/7B-v0.3/",
            prompt,
            f"--max_tokens={max_tokens}",
            f"--temperature={temperature}",
            "--instruct",
            "--lora_path=/root/CHEMISTral7Bv0.3/runs/checkpoints/checkpoint_000300/consolidated/lora.safetensors"
        ]
        logger.info(f"Running command: {' '.join(command)}")
        result = subprocess.run(command, capture_output=True, text=True)
        if result.returncode != 0:
            logger.error(f"Command failed with return code {result.returncode}")
            logger.error(f"stderr: {result.stderr}")
            raise HTTPException(status_code=500, detail=result.stderr)

        response = result.stdout.strip()
        sdf_file_path = "/root/CHEMISTral7Bv0.3/example/Conformer3D_COMPOUND_CID_240.sdf"

        # Return the file as a direct download
        return FileResponse(sdf_file_path, media_type='chemical/x-mdl-sdfile', filename="Conformer3D_COMPOUND_CID_240.sdf")

    except Exception as e:
        logger.exception("Exception occurred during inference.")
        raise HTTPException(status_code=500, detail=str(e))

# @app.post("/predict")
# async def predict_alternative(
#     prompt: str = Form(...),
#     max_tokens: int = Form(256),
#     temperature: float = Form(1.0),
#     file: Optional[UploadFile] = File(None)
# ):
#     try:
#         global sdf_file_path
#         if file:
#             file_path = f"/tmp/{file.filename}"
#             with open(file_path, "wb") as f:
#                 f.write(file.file.read())
#             if file.filename.endswith(".pdb"):
#                 prompt += f" {process_pdb(file_path)}"
#             elif file.filename.endswith(".sdf"):
#                 prompt += f" {process_sdf(file_path)}"
#         else:
#             try:
#                 sdf_file = extract_and_convert_to_sdf(prompt)
#                 if sdf_file:
#                     prompt += f" {sdf_file}"
#             except ValueError as e:
#                 logger.info(str(e))

#         command = [
#             "python",
#             "/root/CHEMISTral7Bv0.3/mistral_chat_script.py",
#             "/root/mistral_models/7B-v0.3/",
#             prompt,
#             f"--max_tokens={max_tokens}",
#             f"--temperature={temperature}",
#             "--instruct",
#             "--lora_path=/root/CHEMISTral7Bv0.3/runs/checkpoints/checkpoint_000300/consolidated/lora.safetensors"
#         ]

#         logger.info(f"Running command: {' '.join(command)}")
#         result = subprocess.run(command, capture_output=True, text=True)
        
#         if result.returncode != 0:
#             logger.error(f"Command failed with return code {result.returncode}")
#             logger.error(f"stderr: {result.stderr}")
#             raise HTTPException(status_code=500, detail=result.stderr)
        
#         response = result.stdout.strip()
#         sdf_file_path = "/root/CHEMISTral7Bv0.3/example/Conformer3D_COMPOUND_CID_240.sdf"

#         return {
#             "response": response,
#             "sdf_file_path": sdf_file_path
#         }
#     except Exception as e:
#         logger.exception("Exception occurred during inference.")
#         raise HTTPException(status_code=500, detail=str(e))

@app.get("/download_sdf")
async def download_sdf():
    try:
        return FileResponse(path=sdf_file_path, filename="Conformer3D_COMPOUND_CID_240.sdf")
    except Exception as e:
        logger.exception("Exception occurred while sending SDF file.")
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)