File size: 4,928 Bytes
1c9c341 4e43a82 1c9c341 20baa88 1c9c341 f6f3cec 1c9c341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
datasets:
- ChengsenWang/ChatTime-1-Finetune-100K
base_model:
- ChengsenWang/ChatTime-1-7B-Base
tags:
- time-series
- pretrained-model
- foundation-model
- multimodality
- multimodal-time-series-foundation-model
pipeline_tag: time-series-forecasting
---
# ChatTime: A Multimodal Time Series Foundation Model
## โจ Introduction
In this paper, we innovatively model time series as a foreign language and construct ChatTime, a unified framework for time series and text processing. As an out-of-the-box multimodal time series foundation model, ChatTime provides zero-shot forecasting capability and supports bimodal input/output for both time series and text. We design a series of experiments to verify the superior performance of ChatTime across multiple tasks and scenarios, and create four multimodal datasets to address data gaps. The experimental results demonstrate the potential and utility of ChatTime.
As depicted in Figure 1(c), during the instruction fine-tuning stage, we fine-tune [ChengsenWang/ChatTime-1-7B-Base](https://huggingface.co/ChengsenWang/ChatTime-1-7B-Base) on [ChengsenWang/ChatTime-1-Finetune-100K](https://huggingface.co/datasets/ChengsenWang/ChatTime-1-Finetune-100K), yielding [ChengsenWang/ChatTime-1-7B-Chat](https://huggingface.co/ChengsenWang/ChatTime-1-7B-Chat).
For details on ChatTime models, training data and procedures, and experimental results, please refer to the [arXiv](https://arxiv.org/abs/2412.11376).
![](architecture.png)
## ๐ Usage
We present three minimal examples showing how to perform the multimodal time series analysis using the ChatTime model. The detailed code is available in the [Github](https://github.com/ForestsKing/ChatTime).
### Zero-Shot Time Series Forecasting
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.model import ChatTime
dataset = "Traffic"
hist_len = 120
pred_len = 24
model_path = "ChengsenWang/ChatTime-1-7B-Chat"
df = pd.read_csv(f"./dataset/{dataset}.csv")
hist_data = np.array(df["Hist"].apply(eval).values.tolist())[:, -hist_len:][0]
pred_data = np.array(df["Pred"].apply(eval).values.tolist())[:, :pred_len][0]
model = ChatTime(hist_len=hist_len, pred_len=pred_len, model_path=model_path)
out = model.predict(hist_data)
hist_x = np.linspace(0, hist_len-1, hist_len)
pred_x = np.linspace(hist_len, hist_len+pred_len-1, pred_len)
plt.figure(figsize=(8, 2), dpi=500)
plt.plot(hist_x, hist_data, color='#000000')
plt.plot(pred_x, pred_data, color='#000000', label='true')
plt.plot(pred_x, out, color='#FF7F0E', label='pred')
plt.axvline(hist_len, color='red')
plt.legend(loc="upper left")
plt.show()
```
### Context-Guided Time Series Forecasting
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.model import ChatTime
dataset = "PTF"
hist_len = 120
pred_len = 24
model_path = "ChengsenWang/ChatTime-1-7B-Chat"
df = pd.read_csv(f"./dataset/{dataset}.csv")
hist_data = np.array(df["Hist"].apply(eval).values.tolist())[:, -hist_len:][0]
pred_data = np.array(df["Pred"].apply(eval).values.tolist())[:, :pred_len][0]
context = df["Text"].values[0]
model = ChatTime(hist_len=hist_len, pred_len=pred_len, model_path=model_path)
out_text = model.predict(hist_data, context)
out = model.predict(hist_data)
hist_x = np.linspace(0, hist_len-1, hist_len)
pred_x = np.linspace(hist_len, hist_len+pred_len-1, pred_len)
plt.figure(figsize=(8, 2), dpi=500)
plt.plot(hist_x, hist_data, color='#000000')
plt.plot(pred_x, pred_data, color='#000000', label='true')
plt.plot(pred_x, out_text, color='#FF7F0E', label='pred_text')
plt.plot(pred_x, out, color='#1F77B4', label='pred')
plt.axvline(hist_len, color='red')
plt.legend(loc="upper left")
plt.show()
```
### Time Series Question Answering
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.model import ChatTime
dataset = "TSQA"
model_path = "ChengsenWang/ChatTime-1-7B-Chat"
df = pd.read_csv(f"./dataset/{dataset}.csv")
series = np.array(df["Series"].apply(eval).values.tolist())[0]
question = df["Question"].values[0]
answer = df["Answer"].values[0]
model = ChatTime(model_path=model_path)
out = model.analyze(question, series)
plt.figure(figsize=(8, 2), dpi=500)
plt.plot(series, color='#000000')
plt.show()
print(question)
print(f"\n{out} / {answer}\n")
```
## ๐ Citation
If you find this repo or our work useful for your research, please consider citing the paper:
```tex
@inproceedings{
author = {Chengsen Wang and Qi Qi and Jingyu Wang and Haifeng Sun and Zirui Zhuang and Jinming Wu and Lei Zhang and Jianxin Liao},
title = {ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data},
booktitle = {AAAI Conference on Artificial Intelligence},
year = {2025},
}
```
## ๐ช Contact
If you have any question, please contact [[email protected]](). |