Upload model.v1/model_and_train.py with huggingface_hub
Browse files- model.v1/model_and_train.py +293 -0
model.v1/model_and_train.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# basic imports
|
2 |
+
import os
|
3 |
+
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
|
5 |
+
|
6 |
+
# other external imports
|
7 |
+
import pandas as pd
|
8 |
+
# torch imports
|
9 |
+
import torch
|
10 |
+
from datasets import load_dataset
|
11 |
+
from torch.utils.data import DataLoader, Dataset
|
12 |
+
# transformers imports
|
13 |
+
from transformers import (BertConfig, BertTokenizer, EncoderDecoderConfig,
|
14 |
+
EncoderDecoderModel, LayoutLMv3Tokenizer, LiltConfig,
|
15 |
+
LiltModel, Seq2SeqTrainer, Seq2SeqTrainingArguments,
|
16 |
+
default_data_collator)
|
17 |
+
|
18 |
+
# internal imports
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# prepare tokenizer.
|
23 |
+
def prepare_tokenizer(src_tokenizer_dir, tgt_tokenizer_dir):
|
24 |
+
src_tokenizer = LayoutLMv3Tokenizer.from_pretrained(src_tokenizer_dir)
|
25 |
+
tgt_tokenizer = BertTokenizer.from_pretrained(tgt_tokenizer_dir)
|
26 |
+
|
27 |
+
return src_tokenizer, tgt_tokenizer
|
28 |
+
|
29 |
+
|
30 |
+
# read data points.
|
31 |
+
def prepare_dataset_df(data_file):
|
32 |
+
|
33 |
+
def filter_fn(exam):
|
34 |
+
bboxes = exam["layout_src"]
|
35 |
+
for box in bboxes:
|
36 |
+
x0, y0, x1, y1 = box
|
37 |
+
if (x0 > x1) or (y0 > y1):
|
38 |
+
print("(x0 > x1) or (y0 > y1)")
|
39 |
+
return False
|
40 |
+
for cor in box:
|
41 |
+
if cor < 0 or cor > 1000:
|
42 |
+
# print("cor < 0 or cor > 1000")
|
43 |
+
# print(exam['img_path'],box)
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
dataset = load_dataset("json", data_files=data_file)["train"]
|
48 |
+
print()
|
49 |
+
print(f"Number of examples: {len(dataset)}")
|
50 |
+
print()
|
51 |
+
|
52 |
+
dataset = dataset.filter(filter_fn, num_proc=48)
|
53 |
+
|
54 |
+
dataset_df = dataset.to_pandas()
|
55 |
+
# dataset_df = pd.read_json(data_file, lines=True, orient="records")
|
56 |
+
|
57 |
+
# filter the nan data points.
|
58 |
+
dataset_df = dataset_df[~dataset_df["tgt_sen_trans"].isna()]
|
59 |
+
dataset_df = dataset_df[~dataset_df["text_src"].isna()]
|
60 |
+
dataset_df = dataset_df[~dataset_df["layout_src"].isna()]
|
61 |
+
# remove entries where "text_src" length is less than 3
|
62 |
+
dataset_df = dataset_df[dataset_df["text_src"].str.len() >= 3]
|
63 |
+
# reconstruct the idx to avoid index_error.
|
64 |
+
dataset_df = dataset_df.reset_index(drop=True)
|
65 |
+
|
66 |
+
print(f"Number of examples after filtered: {len(dataset_df)}")
|
67 |
+
return dataset_df
|
68 |
+
|
69 |
+
|
70 |
+
class MyDataset(Dataset):
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
df,
|
75 |
+
src_tokenizer,
|
76 |
+
tgt_tokenizer,
|
77 |
+
max_src_length,
|
78 |
+
max_target_length,
|
79 |
+
):
|
80 |
+
self.df = df
|
81 |
+
self.src_tokenizer = src_tokenizer
|
82 |
+
self.tgt_tokenizer = tgt_tokenizer
|
83 |
+
self.max_src_length = max_src_length
|
84 |
+
self.max_target_length = max_target_length
|
85 |
+
|
86 |
+
def __len__(self):
|
87 |
+
return len(self.df)
|
88 |
+
|
89 |
+
def __getitem__(self, idx):
|
90 |
+
# get text_src + layout_src + tgt_trans.
|
91 |
+
text_src = self.df['text_src'][idx]
|
92 |
+
layout_src = self.df['layout_src'][idx]
|
93 |
+
tgt_trans = self.df['tgt_sen_trans'][idx]
|
94 |
+
|
95 |
+
# read in annotations at word-level (words, word boxes)
|
96 |
+
words_ = text_src.split(" ")
|
97 |
+
word_boxes_ = layout_src
|
98 |
+
# print('words', words_, len(words_), len(word_boxes_))
|
99 |
+
assert len(words_) == len(word_boxes_)
|
100 |
+
words = []
|
101 |
+
word_boxes = []
|
102 |
+
for word, word_box in zip(words_, word_boxes_):
|
103 |
+
if (word_box[0] >= word_box[2]) or (word_box[1] >= word_box[3]):
|
104 |
+
continue
|
105 |
+
|
106 |
+
words.append(word)
|
107 |
+
word_boxes.append(word_box)
|
108 |
+
|
109 |
+
assert len(words) == len(word_boxes)
|
110 |
+
|
111 |
+
encoding = self.src_tokenizer(
|
112 |
+
words,
|
113 |
+
boxes=word_boxes,
|
114 |
+
padding="max_length",
|
115 |
+
truncation=True,
|
116 |
+
max_length=self.max_src_length,
|
117 |
+
)
|
118 |
+
|
119 |
+
# construct labels.
|
120 |
+
labels = self.tgt_tokenizer(
|
121 |
+
tgt_trans,
|
122 |
+
padding="max_length",
|
123 |
+
truncation=True,
|
124 |
+
max_length=self.max_target_length)["input_ids"]
|
125 |
+
# important: make sure that PAD tokens are ignored by the loss function
|
126 |
+
labels = [
|
127 |
+
label if label != self.tgt_tokenizer.pad_token_id else -100
|
128 |
+
for label in labels
|
129 |
+
]
|
130 |
+
|
131 |
+
encoding["labels"] = labels
|
132 |
+
|
133 |
+
assert len(encoding['input_ids']) == self.max_src_length
|
134 |
+
assert len(encoding['attention_mask']) == self.max_src_length
|
135 |
+
assert len(encoding['bbox']) == self.max_src_length
|
136 |
+
assert len(encoding['labels']) == self.max_target_length
|
137 |
+
|
138 |
+
# finally, convert everything to PyTorch tensors
|
139 |
+
for k, v in encoding.items():
|
140 |
+
encoding[k] = torch.as_tensor(encoding[k])
|
141 |
+
|
142 |
+
return encoding
|
143 |
+
|
144 |
+
|
145 |
+
def prepare_model(src_tokenizer,
|
146 |
+
tgt_tokenizer,
|
147 |
+
max_src_len,
|
148 |
+
max_tgt_len,
|
149 |
+
num_encoder_hidden_layers,
|
150 |
+
num_decoder_hidden_layers,
|
151 |
+
encoder_ckpt_dir,
|
152 |
+
model_ckpt_dir=None):
|
153 |
+
config_encoder = LiltConfig.from_pretrained(
|
154 |
+
encoder_ckpt_dir,
|
155 |
+
max_position_embeddings=max_src_len + 2,
|
156 |
+
num_hidden_layers=num_encoder_hidden_layers)
|
157 |
+
config_decoder = BertConfig(vocab_size=tgt_tokenizer.vocab_size,
|
158 |
+
max_position_embeddings=max_tgt_len,
|
159 |
+
num_hidden_layers=num_decoder_hidden_layers)
|
160 |
+
|
161 |
+
model_config = EncoderDecoderConfig.from_encoder_decoder_configs(
|
162 |
+
encoder_config=config_encoder,
|
163 |
+
decoder_config=config_decoder,
|
164 |
+
)
|
165 |
+
model = EncoderDecoderModel(config=model_config, )
|
166 |
+
|
167 |
+
model.config.decoder_start_token_id = tgt_tokenizer.cls_token_id
|
168 |
+
model.config.pad_token_id = tgt_tokenizer.pad_token_id
|
169 |
+
model.config.vocab_size = tgt_tokenizer.vocab_size
|
170 |
+
model.config.eos_token_id = tgt_tokenizer.pad_token_id
|
171 |
+
|
172 |
+
from safetensors.torch import load_file
|
173 |
+
if model_ckpt_dir:
|
174 |
+
bin_path = f"{model_ckpt_dir}/pytorch_model.bin"
|
175 |
+
safetensors_path = f"{model_ckpt_dir}/model.safetensors"
|
176 |
+
if os.path.exists(bin_path):
|
177 |
+
state_dict = torch.load(bin_path)
|
178 |
+
elif os.path.exists(safetensors_path):
|
179 |
+
state_dict = load_file(safetensors_path)
|
180 |
+
else:
|
181 |
+
raise FileNotFoundError(
|
182 |
+
"Neither pytorch_model.bin nor model.safetensors found in the specified directory."
|
183 |
+
)
|
184 |
+
model.load_state_dict(state_dict, strict=False)
|
185 |
+
model.save_pretrained(
|
186 |
+
f"continued_{model_ckpt_dir}") #save at continued training
|
187 |
+
else:
|
188 |
+
# Loading the pre-trained params and then save the model, including its configuration.
|
189 |
+
tmp_encoder = LiltModel.from_pretrained(
|
190 |
+
pretrained_model_name_or_path=encoder_ckpt_dir,
|
191 |
+
config=config_encoder,
|
192 |
+
)
|
193 |
+
# tmp_encoder = LiltModel(config=config_encoder)
|
194 |
+
model.encoder = tmp_encoder
|
195 |
+
# model.save_pretrained("undertrained_default_safe_true")
|
196 |
+
model.save_pretrained("undertrained_safe_serialization_False", safe_serialization=False)
|
197 |
+
# model.load_state_dict(torch.load(f"undertrained/pytorch_model.bin"))
|
198 |
+
|
199 |
+
bin_path = "undertrained_safe_serialization_False/pytorch_model.bin"
|
200 |
+
safetensors_path = "undertrained_default_safe_true/model.safetensors"
|
201 |
+
if os.path.exists(bin_path):
|
202 |
+
state_dict = torch.load(bin_path)
|
203 |
+
elif os.path.exists(safetensors_path):
|
204 |
+
state_dict = load_file(safetensors_path)
|
205 |
+
else:
|
206 |
+
raise FileNotFoundError(
|
207 |
+
"Neither pytorch_model.bin nor model.safetensors found in the specified directory."
|
208 |
+
)
|
209 |
+
model.load_state_dict(state_dict, strict=False)
|
210 |
+
|
211 |
+
print(model.config)
|
212 |
+
print(model)
|
213 |
+
|
214 |
+
return model
|
215 |
+
|
216 |
+
|
217 |
+
if __name__ == "__main__":
|
218 |
+
|
219 |
+
# hyper-parameters.
|
220 |
+
## for model.
|
221 |
+
MAX_TGT_LEN = 512
|
222 |
+
MAX_SRC_LEN = 512
|
223 |
+
num_encoder_hidden_layers = 12
|
224 |
+
num_decoder_hidden_layers = 12
|
225 |
+
|
226 |
+
## for training.
|
227 |
+
num_instances = 500000 #total 620082 ./dataset/merged.jsonl Number of examples after filtered: 547084
|
228 |
+
learning_rate = 1e-4
|
229 |
+
batch_size = 28
|
230 |
+
num_train_steps = 400000 #400000
|
231 |
+
output_dir = f"./train.lr_{learning_rate}.bsz_{batch_size}.step_{num_train_steps}.layer_{num_encoder_hidden_layers}-{num_decoder_hidden_layers}"
|
232 |
+
save_total_limit = 100
|
233 |
+
save_steps = num_train_steps // save_total_limit
|
234 |
+
|
235 |
+
dataset_dir = "/home/zychen/hwproject/my_modeling_phase_1/dataset"
|
236 |
+
data_file = f"{dataset_dir}/merged.jsonl"
|
237 |
+
|
238 |
+
# model_ckpt_dir = '/home/zychen/hwproject/my_modeling_phase_1/train.lr_0.0001.bsz_8.step_400000.layer_12-12/checkpoint-32000'
|
239 |
+
model_ckpt_dir = '/home/zychen/hwproject/my_modeling_phase_1/train.lr_0.0001.bsz_16.step_500000.layer_12-12_36k+20k/checkpoint-20000'
|
240 |
+
encoder_ckpt_dir = "/home/zychen/hwproject/my_modeling_phase_1/Tokenizer_PretrainedWeights/lilt-roberta-en-base"
|
241 |
+
|
242 |
+
tgt_tokenizer_dir = "/home/zychen/hwproject/my_modeling_phase_1/Tokenizer_PretrainedWeights/bert-base-chinese-tokenizer"
|
243 |
+
|
244 |
+
src_tokenizer, tgt_tokenizer = prepare_tokenizer(
|
245 |
+
src_tokenizer_dir=encoder_ckpt_dir,
|
246 |
+
tgt_tokenizer_dir=tgt_tokenizer_dir,
|
247 |
+
)
|
248 |
+
dataset_df = prepare_dataset_df(data_file=data_file)[:num_instances]
|
249 |
+
print(f"\nnum_instances: {len(dataset_df)}\n")
|
250 |
+
print(dataset_df)
|
251 |
+
my_dataset = MyDataset(
|
252 |
+
df=dataset_df,
|
253 |
+
src_tokenizer=src_tokenizer,
|
254 |
+
tgt_tokenizer=tgt_tokenizer,
|
255 |
+
max_src_length=MAX_SRC_LEN,
|
256 |
+
max_target_length=MAX_TGT_LEN,
|
257 |
+
)
|
258 |
+
model = prepare_model(src_tokenizer=src_tokenizer,
|
259 |
+
tgt_tokenizer=tgt_tokenizer,
|
260 |
+
max_src_len=MAX_SRC_LEN,
|
261 |
+
max_tgt_len=MAX_TGT_LEN,
|
262 |
+
num_encoder_hidden_layers=num_encoder_hidden_layers,
|
263 |
+
num_decoder_hidden_layers=num_decoder_hidden_layers,
|
264 |
+
encoder_ckpt_dir=encoder_ckpt_dir,
|
265 |
+
model_ckpt_dir=model_ckpt_dir)
|
266 |
+
|
267 |
+
training_args = Seq2SeqTrainingArguments(
|
268 |
+
predict_with_generate=False,
|
269 |
+
evaluation_strategy="no",
|
270 |
+
per_device_train_batch_size=batch_size,
|
271 |
+
fp16=True,
|
272 |
+
output_dir=output_dir,
|
273 |
+
logging_steps=1,
|
274 |
+
# save_strategy="epoch",
|
275 |
+
learning_rate=learning_rate,
|
276 |
+
max_steps=num_train_steps,
|
277 |
+
warmup_ratio=0.05,
|
278 |
+
save_total_limit=save_total_limit,
|
279 |
+
save_steps=save_steps,
|
280 |
+
save_safetensors=False,
|
281 |
+
)
|
282 |
+
# print(training_args)
|
283 |
+
# instantiate trainer
|
284 |
+
trainer = Seq2SeqTrainer(
|
285 |
+
model=model,
|
286 |
+
args=training_args,
|
287 |
+
compute_metrics=None,
|
288 |
+
train_dataset=my_dataset,
|
289 |
+
eval_dataset=None,
|
290 |
+
data_collator=default_data_collator,
|
291 |
+
)
|
292 |
+
|
293 |
+
trainer.train()
|