File size: 10,591 Bytes
41404b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# basic imports
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "4"

# other external imports
import pandas as pd
# torch imports
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
# transformers imports
from transformers import (BertConfig, BertTokenizer, EncoderDecoderConfig,
                          EncoderDecoderModel, LayoutLMv3Tokenizer, LiltConfig,
                          LiltModel, Seq2SeqTrainer, Seq2SeqTrainingArguments,
                          default_data_collator)

# internal imports



# prepare tokenizer.
def prepare_tokenizer(src_tokenizer_dir, tgt_tokenizer_dir):
    src_tokenizer = LayoutLMv3Tokenizer.from_pretrained(src_tokenizer_dir)
    tgt_tokenizer = BertTokenizer.from_pretrained(tgt_tokenizer_dir)

    return src_tokenizer, tgt_tokenizer


# read data points.
def prepare_dataset_df(data_file):

    def filter_fn(exam):
        bboxes = exam["layout_src"]
        for box in bboxes:
            x0, y0, x1, y1 = box
            if (x0 > x1) or (y0 > y1):
                print("(x0 > x1) or (y0 > y1)")
                return False
            for cor in box:
                if cor < 0 or cor > 1000:
                    # print("cor < 0 or cor > 1000")
                    # print(exam['img_path'],box)
                    return False
        return True

    dataset = load_dataset("json", data_files=data_file)["train"]
    print()
    print(f"Number of examples: {len(dataset)}")
    print()

    dataset = dataset.filter(filter_fn, num_proc=48)

    dataset_df = dataset.to_pandas()
    # dataset_df = pd.read_json(data_file, lines=True, orient="records")

    # filter the nan data points.
    dataset_df = dataset_df[~dataset_df["tgt_sen_trans"].isna()]
    dataset_df = dataset_df[~dataset_df["text_src"].isna()]
    dataset_df = dataset_df[~dataset_df["layout_src"].isna()]
    # remove entries where "text_src" length is less than 3
    dataset_df = dataset_df[dataset_df["text_src"].str.len() >= 3]
    # reconstruct the idx to avoid index_error.
    dataset_df = dataset_df.reset_index(drop=True)

    print(f"Number of examples after filtered: {len(dataset_df)}")
    return dataset_df


class MyDataset(Dataset):

    def __init__(
        self,
        df,
        src_tokenizer,
        tgt_tokenizer,
        max_src_length,
        max_target_length,
    ):
        self.df = df
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer
        self.max_src_length = max_src_length
        self.max_target_length = max_target_length

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        # get text_src + layout_src + tgt_trans.
        text_src = self.df['text_src'][idx]
        layout_src = self.df['layout_src'][idx]
        tgt_trans = self.df['tgt_sen_trans'][idx]

        # read in annotations at word-level (words, word boxes)
        words_ = text_src.split(" ")
        word_boxes_ = layout_src
        # print('words', words_, len(words_), len(word_boxes_))
        assert len(words_) == len(word_boxes_)
        words = []
        word_boxes = []
        for word, word_box in zip(words_, word_boxes_):
            if (word_box[0] >= word_box[2]) or (word_box[1] >= word_box[3]):
                continue

            words.append(word)
            word_boxes.append(word_box)

        assert len(words) == len(word_boxes)

        encoding = self.src_tokenizer(
            words,
            boxes=word_boxes,
            padding="max_length",
            truncation=True,
            max_length=self.max_src_length,
        )

        # construct labels.
        labels = self.tgt_tokenizer(
            tgt_trans,
            padding="max_length",
            truncation=True,
            max_length=self.max_target_length)["input_ids"]
        # important: make sure that PAD tokens are ignored by the loss function
        labels = [
            label if label != self.tgt_tokenizer.pad_token_id else -100
            for label in labels
        ]

        encoding["labels"] = labels

        assert len(encoding['input_ids']) == self.max_src_length
        assert len(encoding['attention_mask']) == self.max_src_length
        assert len(encoding['bbox']) == self.max_src_length
        assert len(encoding['labels']) == self.max_target_length

        # finally, convert everything to PyTorch tensors
        for k, v in encoding.items():
            encoding[k] = torch.as_tensor(encoding[k])

        return encoding


def prepare_model(src_tokenizer,
                  tgt_tokenizer,
                  max_src_len,
                  max_tgt_len,
                  num_encoder_hidden_layers,
                  num_decoder_hidden_layers,
                  encoder_ckpt_dir,
                  model_ckpt_dir=None):
    config_encoder = LiltConfig.from_pretrained(
        encoder_ckpt_dir,
        max_position_embeddings=max_src_len + 2,
        num_hidden_layers=num_encoder_hidden_layers)
    config_decoder = BertConfig(vocab_size=tgt_tokenizer.vocab_size,
                                max_position_embeddings=max_tgt_len,
                                num_hidden_layers=num_decoder_hidden_layers)

    model_config = EncoderDecoderConfig.from_encoder_decoder_configs(
        encoder_config=config_encoder,
        decoder_config=config_decoder,
    )
    model = EncoderDecoderModel(config=model_config, )

    model.config.decoder_start_token_id = tgt_tokenizer.cls_token_id
    model.config.pad_token_id = tgt_tokenizer.pad_token_id
    model.config.vocab_size = tgt_tokenizer.vocab_size
    model.config.eos_token_id = tgt_tokenizer.pad_token_id

    from safetensors.torch import load_file
    if model_ckpt_dir:
        bin_path = f"{model_ckpt_dir}/pytorch_model.bin"
        safetensors_path = f"{model_ckpt_dir}/model.safetensors"
        if os.path.exists(bin_path):
            state_dict = torch.load(bin_path)
        elif os.path.exists(safetensors_path):
            state_dict = load_file(safetensors_path)
        else:
            raise FileNotFoundError(
                "Neither pytorch_model.bin nor model.safetensors found in the specified directory."
            )
        model.load_state_dict(state_dict, strict=False)
        model.save_pretrained(
            f"continued_{model_ckpt_dir}")  #save at continued training
    else:
        # Loading the pre-trained params and then save the model, including its configuration.
        tmp_encoder = LiltModel.from_pretrained(
            pretrained_model_name_or_path=encoder_ckpt_dir,
            config=config_encoder,
        )
        # tmp_encoder = LiltModel(config=config_encoder)
        model.encoder = tmp_encoder
        # model.save_pretrained("undertrained_default_safe_true")
        model.save_pretrained("undertrained_safe_serialization_False", safe_serialization=False)
        # model.load_state_dict(torch.load(f"undertrained/pytorch_model.bin"))

        bin_path = "undertrained_safe_serialization_False/pytorch_model.bin"
        safetensors_path = "undertrained_default_safe_true/model.safetensors"
        if os.path.exists(bin_path):
            state_dict = torch.load(bin_path)
        elif os.path.exists(safetensors_path):
            state_dict = load_file(safetensors_path)
        else:
            raise FileNotFoundError(
                "Neither pytorch_model.bin nor model.safetensors found in the specified directory."
            )
        model.load_state_dict(state_dict, strict=False)

    print(model.config)
    print(model)

    return model


if __name__ == "__main__":

    # hyper-parameters.
    ## for model.
    MAX_TGT_LEN = 512
    MAX_SRC_LEN = 512
    num_encoder_hidden_layers = 12
    num_decoder_hidden_layers = 12

    ## for training.
    num_instances = 500000  #total 620082 ./dataset/merged.jsonl Number of examples after filtered: 547084
    learning_rate = 1e-4
    batch_size = 28
    num_train_steps = 400000 #400000
    output_dir = f"./train.lr_{learning_rate}.bsz_{batch_size}.step_{num_train_steps}.layer_{num_encoder_hidden_layers}-{num_decoder_hidden_layers}"
    save_total_limit = 100
    save_steps = num_train_steps // save_total_limit

    dataset_dir = "/home/zychen/hwproject/my_modeling_phase_1/dataset"
    data_file = f"{dataset_dir}/merged.jsonl"

    # model_ckpt_dir = '/home/zychen/hwproject/my_modeling_phase_1/train.lr_0.0001.bsz_8.step_400000.layer_12-12/checkpoint-32000'
    model_ckpt_dir = '/home/zychen/hwproject/my_modeling_phase_1/train.lr_0.0001.bsz_16.step_500000.layer_12-12_36k+20k/checkpoint-20000'
    encoder_ckpt_dir = "/home/zychen/hwproject/my_modeling_phase_1/Tokenizer_PretrainedWeights/lilt-roberta-en-base"

    tgt_tokenizer_dir = "/home/zychen/hwproject/my_modeling_phase_1/Tokenizer_PretrainedWeights/bert-base-chinese-tokenizer"

    src_tokenizer, tgt_tokenizer = prepare_tokenizer(
        src_tokenizer_dir=encoder_ckpt_dir,
        tgt_tokenizer_dir=tgt_tokenizer_dir,
    )
    dataset_df = prepare_dataset_df(data_file=data_file)[:num_instances]
    print(f"\nnum_instances: {len(dataset_df)}\n")
    print(dataset_df)
    my_dataset = MyDataset(
        df=dataset_df,
        src_tokenizer=src_tokenizer,
        tgt_tokenizer=tgt_tokenizer,
        max_src_length=MAX_SRC_LEN,
        max_target_length=MAX_TGT_LEN,
    )
    model = prepare_model(src_tokenizer=src_tokenizer,
                          tgt_tokenizer=tgt_tokenizer,
                          max_src_len=MAX_SRC_LEN,
                          max_tgt_len=MAX_TGT_LEN,
                          num_encoder_hidden_layers=num_encoder_hidden_layers,
                          num_decoder_hidden_layers=num_decoder_hidden_layers,
                          encoder_ckpt_dir=encoder_ckpt_dir,
                          model_ckpt_dir=model_ckpt_dir)

    training_args = Seq2SeqTrainingArguments(
        predict_with_generate=False,
        evaluation_strategy="no",
        per_device_train_batch_size=batch_size,
        fp16=True,
        output_dir=output_dir,
        logging_steps=1,
        # save_strategy="epoch",
        learning_rate=learning_rate,
        max_steps=num_train_steps,
        warmup_ratio=0.05,
        save_total_limit=save_total_limit,
        save_steps=save_steps,
        save_safetensors=False,
    )
    # print(training_args)
    # instantiate trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        compute_metrics=None,
        train_dataset=my_dataset,
        eval_dataset=None,
        data_collator=default_data_collator,
    )

    trainer.train()