File size: 8,867 Bytes
41404b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# basic imports
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# transformers imports
from transformers import LiltConfig, BertConfig, EncoderDecoderConfig, EncoderDecoderModel, BertTokenizer, LayoutLMv3Tokenizer, LiltModel
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
from transformers import default_data_collator
from datasets import load_dataset

# torch imports
import torch
from torch.utils.data import Dataset, DataLoader

# internal imports

# other external imports
import pandas as pd


# prepare tokenizer.
def prepare_tokenizer(src_tokenizer_dir, tgt_tokenizer_dir):
    src_tokenizer = LayoutLMv3Tokenizer.from_pretrained(src_tokenizer_dir)
    tgt_tokenizer = BertTokenizer.from_pretrained(tgt_tokenizer_dir)

    return src_tokenizer, tgt_tokenizer


# read data points.
def prepare_dataset_df(data_file):

    def filter_fn(exam):
        bboxes = exam['block_list']
        for box in bboxes:
            x0, y0, x1, y1 = box["block_bbox"]
            if (x0 > x1) or (y0 > y1):
                print(box["block_bbox"])
                return False
            for cor in box["block_bbox"]:
                # if cor < 0 or cor > 1000:
                if cor <0:
                    return False
        return True

    dataset = load_dataset("json", data_files=data_file)["train"]
    print()
    print(f"Number of examples: {len(dataset)}")
    print()
    # print(dataset[0]['block_list'])
    dataset = dataset.filter(filter_fn, num_proc=48)

    dataset_df = dataset.to_pandas()
    # dataset_df = pd.read_json(data_file, lines=True, orient="records")

    # filter the nan data points.
    # dataset_df = dataset_df[~dataset_df["tgt_sen_trans"].isna()]
    # dataset_df = dataset_df[~dataset_df["text_src"].isna()]
    # dataset_df = dataset_df[~dataset_df["layout_src"].isna()]

    # reconstruct the idx to avoid index_error.
    dataset_df = dataset_df.reset_index(drop=True)

    print(f"Number of examples after filtered: {len(dataset_df)}")
    print(dataset_df)
    return dataset_df


class MyDataset(Dataset):

    def __init__(
        self,
        df,
        src_tokenizer,
        tgt_tokenizer,
        max_src_length,
        max_target_length,
    ):
        self.df = df
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer
        self.max_src_length = max_src_length
        self.max_target_length = max_target_length

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        # get text_src + layout_src + tgt_trans.
        text_src = self.df['text_src'][idx]
        layout_src = self.df['layout_src'][idx]
        tgt_trans = self.df['tgt_sen_trans'][idx]

        # read in annotations at word-level (words, word boxes)
        words_ = text_src.split(" ")
        word_boxes_ = layout_src
        assert len(words_) == len(word_boxes_)
        words = []
        word_boxes = []
        for word, word_box in zip(words_, word_boxes_):
            if (word_box[0] >= word_box[2]) or (word_box[1] >= word_box[3]):
                continue

            words.append(word)
            word_boxes.append(word_box)

        assert len(words) == len(word_boxes)

        encoding = self.src_tokenizer(
            words,
            boxes=word_boxes,
            padding="max_length",
            truncation=True,
            max_length=self.max_src_length,
        )

        # construct labels.
        labels = self.tgt_tokenizer(
            tgt_trans,
            padding="max_length",
            truncation=True,
            max_length=self.max_target_length)["input_ids"]
        # important: make sure that PAD tokens are ignored by the loss function
        labels = [
            label if label != self.tgt_tokenizer.pad_token_id else -100
            for label in labels
        ]

        encoding["labels"] = labels

        assert len(encoding['input_ids']) == self.max_src_length
        assert len(encoding['attention_mask']) == self.max_src_length
        assert len(encoding['bbox']) == self.max_src_length
        assert len(encoding['labels']) == self.max_target_length

        # finally, convert everything to PyTorch tensors
        for k, v in encoding.items():
            encoding[k] = torch.as_tensor(encoding[k])

        return encoding


def prepare_model(src_tokenizer,
                  tgt_tokenizer,
                  max_src_len,
                  max_tgt_len,
                  num_encoder_hidden_layers,
                  num_decoder_hidden_layers,
                  encoder_ckpt_dir,
                  model_ckpt_dir=None):
    config_encoder = LiltConfig.from_pretrained(
        encoder_ckpt_dir,
        max_position_embeddings=max_src_len + 2,
        num_hidden_layers=num_encoder_hidden_layers)
    config_decoder = BertConfig(vocab_size=tgt_tokenizer.vocab_size,
                                max_position_embeddings=max_tgt_len,
                                num_hidden_layers=num_decoder_hidden_layers)

    model_config = EncoderDecoderConfig.from_encoder_decoder_configs(
        encoder_config=config_encoder,
        decoder_config=config_decoder,
    )
    model = EncoderDecoderModel(config=model_config, )

    model.config.decoder_start_token_id = tgt_tokenizer.cls_token_id
    model.config.pad_token_id = tgt_tokenizer.pad_token_id
    model.config.vocab_size = tgt_tokenizer.vocab_size
    model.config.eos_token_id = tgt_tokenizer.pad_token_id

    if model_ckpt_dir:
        model.load_state_dict(
            torch.load(f"{model_ckpt_dir}/pytorch_model.bin"))
    else:
        # Loading the pre-trained params and then save the model, including its configuration.
        tmp_encoder = LiltModel.from_pretrained(
            pretrained_model_name_or_path=encoder_ckpt_dir,
            config=config_encoder,
        )
        # tmp_encoder = LiltModel(config=config_encoder)
        model.encoder = tmp_encoder
        model.save_pretrained("undertrained")
        model.load_state_dict(torch.load(f"undertrained/pytorch_model.bin"))

    print(model.config)
    print(model)

    return model


if __name__ == "__main__":

    # hyper-parameters.
    ## for model.
    MAX_TGT_LEN = 512
    MAX_SRC_LEN = 512
    num_encoder_hidden_layers = 12
    num_decoder_hidden_layers = 12

    ## for training.
    # wc 12420 ./dataset/scene_imgs/jsons/en_json/en_scene.jsonl
    # wc 12230 ./dataset/scene_imgs/jsons/zh_json/zh_scene.jsonl
    num_instances = 500000
    learning_rate = 1e-4
    batch_size = 16
    num_train_steps = 400000
    output_dir = f"./train.lr_{learning_rate}.bsz_{batch_size}.step_{num_train_steps}.layer_{num_encoder_hidden_layers}-{num_decoder_hidden_layers}"
    save_total_limit = 100
    save_steps = num_train_steps // save_total_limit

    # dataset_dir = "/home/zychen/hwproject/my_modeling_phase_1/dataset/scene_imgs/jsons/en_json/en_scene.jsonl"
    data_file = "/home/zychen/hwproject/my_modeling_phase_1/dataset/scene_imgs/jsons/en_json/en_scene.jsonl"

    model_ckpt_dir = None

    encoder_ckpt_dir = "./Tokenizer_PretrainedWeights/lilt-roberta-en-base"

    tgt_tokenizer_dir = "./Tokenizer_PretrainedWeights/bert-base-chinese-tokenizer"

    src_tokenizer, tgt_tokenizer = prepare_tokenizer(
        src_tokenizer_dir=encoder_ckpt_dir,
        tgt_tokenizer_dir=tgt_tokenizer_dir,
    )
    dataset_df = prepare_dataset_df(data_file=data_file)[:num_instances]
    print(f"\nnum_instances: {len(dataset_df)}\n")
    my_dataset = MyDataset(
        df=dataset_df,
        src_tokenizer=src_tokenizer,
        tgt_tokenizer=tgt_tokenizer,
        max_src_length=MAX_SRC_LEN,
        max_target_length=MAX_TGT_LEN,
    )
    model = prepare_model(src_tokenizer=src_tokenizer,
                          tgt_tokenizer=tgt_tokenizer,
                          max_src_len=MAX_SRC_LEN,
                          max_tgt_len=MAX_TGT_LEN,
                          num_encoder_hidden_layers=num_encoder_hidden_layers,
                          num_decoder_hidden_layers=num_decoder_hidden_layers,
                          encoder_ckpt_dir=encoder_ckpt_dir,
                          model_ckpt_dir=model_ckpt_dir)

    training_args = Seq2SeqTrainingArguments(
        predict_with_generate=False,
        evaluation_strategy="no",
        per_device_train_batch_size=batch_size,
        fp16=True,
        output_dir=output_dir,
        logging_steps=1,
        # save_strategy="epoch",
        learning_rate=learning_rate,
        max_steps=num_train_steps,
        warmup_ratio=0.05,
        save_total_limit=save_total_limit,
        save_steps=save_steps,
    )

    # instantiate trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        compute_metrics=None,
        train_dataset=my_dataset,
        eval_dataset=None,
        data_collator=default_data_collator,
    )

    trainer.train()