File size: 2,582 Bytes
a710a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: test-dialogue-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-dialogue-summarization

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9653
- Rouge1: 61.2091
- Rouge2: 36.8979
- Rougel: 46.3962
- Rougelsum: 58.3082
- Gen Len: 135.6733

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 1.0   | 94   | 1.3755          | 53.9112 | 25.5975 | 36.8507 | 50.0306   | 132.7733 |
| No log        | 2.0   | 188  | 1.2081          | 55.5956 | 27.4849 | 37.7785 | 51.7906   | 137.1267 |
| No log        | 3.0   | 282  | 1.1149          | 55.714  | 28.3629 | 39.0763 | 52.439    | 137.62   |
| No log        | 4.0   | 376  | 1.0564          | 56.6202 | 29.789  | 39.9223 | 53.3054   | 135.1733 |
| No log        | 5.0   | 470  | 1.0107          | 57.8272 | 31.5716 | 41.9775 | 54.5114   | 135.1733 |
| 1.1609        | 6.0   | 564  | 0.9775          | 58.561  | 32.5462 | 42.9577 | 55.1653   | 133.5533 |
| 1.1609        | 7.0   | 658  | 0.9683          | 59.0592 | 33.8153 | 43.918  | 56.0493   | 135.3267 |
| 1.1609        | 8.0   | 752  | 0.9626          | 60.4587 | 35.8511 | 45.9511 | 57.3658   | 134.38   |
| 1.1609        | 9.0   | 846  | 0.9623          | 60.3938 | 35.8996 | 45.7161 | 57.2104   | 135.2333 |
| 1.1609        | 10.0  | 940  | 0.9653          | 61.2091 | 36.8979 | 46.3962 | 58.3082   | 135.6733 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3