from datasets import load_dataset from transformers import AutoAdapterModel, AutoTokenizer, Trainer, TrainingArguments # Load datasets dataset_pentesting = load_dataset("canstralian/pentesting-ai") dataset_redpajama = load_dataset("togethercomputer/RedPajama-Data-1T") # Tokenizer tokenizer = AutoTokenizer.from_pretrained("canstralian/rabbitredeux") def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) # Tokenize datasets tokenized_dataset_pentesting = dataset_pentesting.map(tokenize_function, batched=True) tokenized_dataset_redpajama = dataset_redpajama.map(tokenize_function, batched=True) # Prepare datasets train_dataset_pentesting = tokenized_dataset_pentesting["train"] validation_dataset_pentesting = tokenized_dataset_pentesting["validation"] # Load model and adapter model = AutoAdapterModel.from_pretrained("canstralian/rabbitredeux") model.load_adapter("Canstralian/RabbitRedux", set_active=True) # Training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", logging_steps=10, evaluation_strategy="epoch", ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset_pentesting, eval_dataset=validation_dataset_pentesting, ) # Training trainer.train() # Evaluate model trainer.evaluate() # Save the fine-tuned model model.save_pretrained("./fine_tuned_model")