import pandas as pd from sklearn.model_selection import train_test_split def load_data(file_path): """ Load dataset from a CSV file. Args: file_path (str): Path to the CSV file. Returns: pd.DataFrame: Loaded dataset. """ return pd.read_csv(file_path) def preprocess_data(df): """ Preprocess the dataset by handling missing values and encoding categorical variables. Args: df (pd.DataFrame): Raw dataset. Returns: pd.DataFrame: Preprocessed dataset. """ # Handle missing values df = df.dropna() # Encode categorical variables df = pd.get_dummies(df) return df def split_data(df, target_column, test_size=0.2): """ Split the dataset into training and testing sets. Args: df (pd.DataFrame): Preprocessed dataset. target_column (str): Name of the target column. test_size (float): Proportion of the dataset to include in the test split. Returns: X_train, X_test, y_train, y_test: Split datasets. """ X = df.drop(columns=[target_column]) y = df[target_column] return train_test_split(X, y, test_size=test_size, random_state=42)