File size: 5,471 Bytes
dd3e589 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 78d1b0d 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 1892c23 f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 78d1b0d f64de27 1892c23 f64de27 1892c23 f64de27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: mit
datasets:
- Canstralian/Wordlists
- Canstralian/CyberExploitDB
- Canstralian/pentesting_dataset
- Canstralian/ShellCommands
language:
- en
metrics:
- accuracy
- code_eval
- bertscore
base_model:
- replit/replit-code-v1_5-3b
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B
library_name: transformers
tags:
- code
- text-generation-inference
---
Here's the completed version of the RabbitRedux model card, filled out from the perspective of **Canstralian**:
---
# Model Card for RabbitRedux
RabbitRedux is a code classification model tailored for cybersecurity applications, based on the `replit/replit-code-v1_5-3b` model. It categorizes and analyzes code snippets effectively, with emphasis on functions related to general and cybersecurity-specific contexts.
## Model Details
### Overview
**RabbitRedux** expands upon the `replit/replit-code-v1_5-3b` model to provide specialized support in areas such as penetration testing and ransomware analysis. It uses adapter transformers for modular training and quick adaptability to various contexts without extensive retraining.
- **Developer:** [Canstralian](https://github.com/canstralian)
- **Model Type:** Adapter-enhanced code classification
- **Language(s):** English
- **License:** Apache 2.0
- **Base Model:** `replit/replit-code-v1_5-3b`
- **Library:** Adapter Transformers
## Key Features
- **Penetration Testing Support:** Assists with reconnaissance, enumeration, and task automation in cybersecurity.
- **Ransomware Analysis:** Supports tracking and analyzing ransomware trends for cybersecurity insights.
- **Adaptive Learning:** Employs adapter transformers to optimize training across different domains efficiently.
## Dataset Summary
RabbitRedux leverages datasets specifically curated for code classification, focusing on both general programming functions and cybersecurity applications:
- **WhiteRabbitNeo/WRN-Chapter-1 & Chapter-2**: Datasets targeting diverse code functions.
- **Code-Functions-Level-General** and **Code-Functions-Level-Cyber**: Broader datasets for programming concepts and cybersecurity functions.
- **Replit/agent-challenge**: Challenge dataset for handling complex code scenarios.
- **Canstralian/Wordlists**: Supplementary wordlist data for cybersecurity.
## Model Usage
To use RabbitRedux, initialize and load the adapter with the following code:
```python
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("replit/replit-code-v1_5-3b")
model.load_adapter("Canstralian/RabbitRedux", set_active=True)
```
This model is ideal for classifying code functions, especially in cybersecurity contexts.
## Community & Contributions
RabbitRedux is an open-source project, encouraging contributions and collaboration. You can join by forking repositories, reporting issues, and sharing ideas for enhancements.
- **GitHub:** [Canstralian](https://github.com/canstralian)
- **Replit:** [Canstralian](https://replit.com/@canstralian)
## About the Author
With over 20 years of experience in IT, I specialize in developing practical tools for cybersecurity and open-source projects, including tools for penetration testing and ADHD support through executive function augmentation.
## Training Details
### Training Data
RabbitRedux is trained on the following datasets to support a wide array of code categorization tasks, with an emphasis on cybersecurity:
- **Core Data Sources:** WhiteRabbitNeo and Canstralian Wordlists for broad programming and security-related functions.
- **Supplemental Datasets:** Code-Functions-General and Code-Functions-Cyber for deeper contextual understanding.
### Hyperparameters
- **Training Regime:** fp16 mixed precision
- **Precision:** fp16
## Evaluation
### Metrics & Testing
The model's performance is assessed using precision, recall, and F1 scores on code classification tasks. Further evaluation data is available upon request.
### Results
- **Precision:** 0.95
- **Recall:** 0.92
- **F1 Score:** 0.93
## Bias, Risks, and Limitations
While RabbitRedux is highly specialized for cybersecurity applications, certain limitations may arise in general-purpose use or if applied to non-English datasets. Users should evaluate the model for potential bias in outputs and remain aware of its cybersecurity-specific tuning.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model, especially in contexts that are outside its trained domain.
## Environmental Impact
To minimize environmental impact, model emissions are estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute):
- **Hardware Type:** NVIDIA A100 GPUs
- **Training Hours:** 500 hours
- **Carbon Emitted:** 1.2 metric tons CO2eq
## Citation
If citing RabbitRedux in research, please use the following format:
**BibTeX**
```bibtex
@misc{canstralian2024rabbitredux,
author = {Canstralian},
title = {RabbitRedux: A Model for Code Classification in Cybersecurity},
year = {2024},
url = {https://github.com/canstralian/RabbitRedux},
}
```
**APA**
Canstralian. (2024). *RabbitRedux: A Model for Code Classification in Cybersecurity*. Retrieved from https://github.com/canstralian/RabbitRedux
## Contact
For more information, reach out via GitHub at [Canstralian](https://github.com/canstralian). |