--- license: llama2 datasets: - ehartford/dolphin --- # Model Card for Model ID 在llama-2-13b上使用dolphin前5萬筆資料集進行訓練 # Fine-Tuning Information - **GPU:** RTX4090 (single core / 24564MiB) - **model:** meta-llama/Llama-2-13b-hf - **dataset:** ehartford/dolphin (取前5w筆訓練集) - **peft_type:** LoRA - **lora_rank:** 8 - **lora_target:** q_proj, v_proj - **per_device_train_batch_size:** 8 - **gradient_accumulation_steps:** 8 - **learning_rate :** 5e-5 - **epoch:** 1 - **precision:** bf16 - **quantization:** load_in_4bit # Fine-Tuning Detail - **train_loss:** 0.8799 - **train_runtime:** 7:11:23 (use deepspeed) # Evaluation - 評估結果來自**HuggingFaceH4/open_llm_leaderboard** - 與Llama-2-13b和其他使用dolphin的模型比較4種Benchmark - Benchmark包含**ARC**、**HellaSwag**、**MMLU**、**TruthfulQA** - **注意**:ehartford/dolphin-llama-13b使用的是llama-1 | Model |Average| ARC |HellaSwag| MMLU | TruthfulQA | |----------------------------------|-------|-------|---------|-------|------------| |meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 | |meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 | |ehartford/dolphin-llama-13b | 59.26 | 55.55 | 77.11 | 52.16 | 52.23 | |CHIH-HUNG/llama-2-13b-dolphin_20w | 60.17 | 59.56 | 82.55 | 55.89 | 42.67 | |CHIH-HUNG/llama-2-13b-dolphin_5w | 61 | 60.67 | 82.69 | 56.23 | 44.41 | # How to convert dataset to json - 在**load_dataset**中輸入資料集名稱,並且在**take**中輸入要取前幾筆資料 - 觀察該資料集的欄位名稱,填入**example**欄位中(例如instruction、input、output) - 最後指定json檔儲存位置 (**json_filename**) ```py import json from datasets import load_dataset # 讀取數據集,take可以取得該數據集前n筆資料 dataset = load_dataset("ehartford/dolphin", split="train", streaming=True).take(50000) # 提取所需欄位並建立新的字典列表 extracted_data = [] for example in dataset: extracted_example = { ### dolphin "instruction": example["instruction"], "input": example["input"], "output": example["output"] } extracted_data.append(extracted_example) # 指定 JSON 文件名稱 json_filename = "dolphin.json" # 寫入 JSON 文件 with open(json_filename, "w") as json_file: json.dump(extracted_data, json_file, indent=4) print(f"數據已提取並保存為 {json_filename}") ```