File size: 4,439 Bytes
3b2ebe8
ead5aab
 
3b2ebe8
ead5aab
 
3b2ebe8
 
ead5aab
3b2ebe8
 
 
ead5aab
3b2ebe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead5aab
3b2ebe8
 
 
 
ead5aab
 
3b2ebe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d40b176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2ebe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead5aab
 
 
 
3b2ebe8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

---
language:
- code
license: apache-2.0
widget:
- text: public [MASK] isOdd(Integer num) {if (num % 2 == 0) {return "even";} else
    {return "odd";}}
---

# Model Card for JavaBERT
 
A BERT-like model pretrained on Java software code.
 
 
 
 
 
 
# Model Details
 
## Model Description
 
A BERT-like model pretrained on Java software code.
 
- **Developed by:** Christian-Albrechts-University of Kiel (CAUKiel)
- **Shared by [Optional]:** Hugging Face
- **Model type:** Fill-Mask
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:** A version of this model using an uncased tokenizer is available at [CAUKiel/JavaBERT-uncased](https://huggingface.co/CAUKiel/JavaBERT-uncased).
  - **Parent Model:** BERT
- **Resources for more information:** 
  - [Associated Paper](https://arxiv.org/pdf/2110.10404.pdf)
 
 
# Uses
 
## Direct Use
 
Fill-Mask
 
## Downstream Use [Optional]
 
More information needed.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
 
 
## Recommendations
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
{ see paper= word something)
 
# Training Details
 
## Training Data
The model was trained on 2,998,345 Java files retrieved from open source projects on GitHub. A ```bert-base-cased``` tokenizer is used by this model.
 
## Training Procedure
 
 
### Training Objective
A MLM (Masked Language Model) objective was used to train this model.
 
### Preprocessing
 
More information needed.
 
 
### Speeds, Sizes, Times
 
More information needed.
 
# Evaluation
 
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
More information needed.
 
 
### Factors
 

 
### Metrics
 
More information needed.
 
 
## Results 
More information needed.
 
 
# Model Examination
 
More information needed.
 
# Environmental Impact
 
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed.
- **Hours used:** More information needed.
- **Cloud Provider:** More information needed.
- **Compute Region:** More information needed.
- **Carbon Emitted:** More information needed.
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed.
 
## Compute Infrastructure
 
More information needed.
 
### Hardware
 
More information needed.
 
### Software
 
More information needed.
 
# Citation
 
 
 
**BibTeX:**

```
@inproceedings{De_Sousa_Hasselbring_2021,
  address={Melbourne, Australia},
  title={JavaBERT: Training a Transformer-Based Model for the Java Programming Language},
  rights={https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html},
  ISBN={9781665435833},
  url={https://ieeexplore.ieee.org/document/9680322/},
  DOI={10.1109/ASEW52652.2021.00028},
  booktitle={2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)},
  publisher={IEEE},
  author={Tavares de Sousa, Nelson and Hasselbring, Wilhelm},
  year={2021},
  month=nov,
  pages={90–95} }
```
 
**APA:**
 
More information needed.
 
# Glossary [optional]
More information needed.
 
# More Information [optional]
 
More information needed.
 
# Model Card Authors [optional]
 
Christian-Albrechts-University of Kiel (CAUKiel)  in collaboration with Ezi Ozoani and the team at Hugging Face
 
# Model Card Contact
 
More information needed.
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

 ```python
from transformers import pipeline
pipe = pipeline('fill-mask', model='CAUKiel/JavaBERT')
output = pipe(CODE) # Replace with Java code; Use '[MASK]' to mask tokens/words in the code.
```
 
</details>