File size: 4,439 Bytes
3b2ebe8 ead5aab 3b2ebe8 ead5aab 3b2ebe8 ead5aab 3b2ebe8 ead5aab 3b2ebe8 ead5aab 3b2ebe8 ead5aab 3b2ebe8 d40b176 3b2ebe8 ead5aab 3b2ebe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
language:
- code
license: apache-2.0
widget:
- text: public [MASK] isOdd(Integer num) {if (num % 2 == 0) {return "even";} else
{return "odd";}}
---
# Model Card for JavaBERT
A BERT-like model pretrained on Java software code.
# Model Details
## Model Description
A BERT-like model pretrained on Java software code.
- **Developed by:** Christian-Albrechts-University of Kiel (CAUKiel)
- **Shared by [Optional]:** Hugging Face
- **Model type:** Fill-Mask
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:** A version of this model using an uncased tokenizer is available at [CAUKiel/JavaBERT-uncased](https://huggingface.co/CAUKiel/JavaBERT-uncased).
- **Parent Model:** BERT
- **Resources for more information:**
- [Associated Paper](https://arxiv.org/pdf/2110.10404.pdf)
# Uses
## Direct Use
Fill-Mask
## Downstream Use [Optional]
More information needed.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
{ see paper= word something)
# Training Details
## Training Data
The model was trained on 2,998,345 Java files retrieved from open source projects on GitHub. A ```bert-base-cased``` tokenizer is used by this model.
## Training Procedure
### Training Objective
A MLM (Masked Language Model) objective was used to train this model.
### Preprocessing
More information needed.
### Speeds, Sizes, Times
More information needed.
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed.
### Factors
### Metrics
More information needed.
## Results
More information needed.
# Model Examination
More information needed.
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed.
- **Hours used:** More information needed.
- **Cloud Provider:** More information needed.
- **Compute Region:** More information needed.
- **Carbon Emitted:** More information needed.
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed.
## Compute Infrastructure
More information needed.
### Hardware
More information needed.
### Software
More information needed.
# Citation
**BibTeX:**
```
@inproceedings{De_Sousa_Hasselbring_2021,
address={Melbourne, Australia},
title={JavaBERT: Training a Transformer-Based Model for the Java Programming Language},
rights={https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html},
ISBN={9781665435833},
url={https://ieeexplore.ieee.org/document/9680322/},
DOI={10.1109/ASEW52652.2021.00028},
booktitle={2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)},
publisher={IEEE},
author={Tavares de Sousa, Nelson and Hasselbring, Wilhelm},
year={2021},
month=nov,
pages={90–95} }
```
**APA:**
More information needed.
# Glossary [optional]
More information needed.
# More Information [optional]
More information needed.
# Model Card Authors [optional]
Christian-Albrechts-University of Kiel (CAUKiel) in collaboration with Ezi Ozoani and the team at Hugging Face
# Model Card Contact
More information needed.
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import pipeline
pipe = pipeline('fill-mask', model='CAUKiel/JavaBERT')
output = pipe(CODE) # Replace with Java code; Use '[MASK]' to mask tokens/words in the code.
```
</details>
|