bourdoiscatie
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,41 +1,969 @@
|
|
1 |
---
|
|
|
2 |
base_model: camembert/camembert-large
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
8 |
- f1
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
-
- name:
|
12 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
-
#
|
19 |
|
20 |
-
|
21 |
-
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.0532
|
23 |
-
- Precision: 0.9860
|
24 |
-
- Recall: 0.9860
|
25 |
-
- F1: 0.9860
|
26 |
-
- Accuracy: 0.9860
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
More information needed
|
31 |
|
32 |
-
## Intended uses & limitations
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
More information needed
|
39 |
|
40 |
## Training procedure
|
41 |
|
@@ -65,3 +993,93 @@ The following hyperparameters were used during training:
|
|
65 |
- Pytorch 2.1.2
|
66 |
- Datasets 2.16.1
|
67 |
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
base_model: camembert/camembert-large
|
|
|
|
|
4 |
metrics:
|
5 |
- precision
|
6 |
- recall
|
7 |
- f1
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
+
- name: NERmembert-large-4entities
|
11 |
results: []
|
12 |
+
datasets:
|
13 |
+
- CATIE-AQ/frenchNER_4entities
|
14 |
+
language:
|
15 |
+
- fr
|
16 |
+
widget:
|
17 |
+
- text: "Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
18 |
+
library_name: transformers
|
19 |
+
pipeline_tag: token-classification
|
20 |
+
co2_eq_emissions: 80
|
21 |
---
|
22 |
|
|
|
|
|
23 |
|
24 |
+
# NERmembert-large-4entities
|
25 |
|
26 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
We present **NERmembert-large-4entities**, which is a [CamemBERT large](https://huggingface.co/camembert/camembert-large) fine-tuned for the Name Entity Recognition task for the French language on four French NER datasets for 4 entities (LOC, PER, ORG, MISC).
|
29 |
+
All these datasets were concatenated and cleaned into a single dataset that we called [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities).
|
30 |
+
There are a total of **384,773** rows, of which **328,757** are for training, **24,131** for validation and **31,885** for testing.
|
31 |
+
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
|
32 |
|
|
|
33 |
|
|
|
34 |
|
35 |
+
## Dataset
|
36 |
|
37 |
+
The dataset used is [frenchNER_4entities](https://huggingface.co/datasets/CATIE-AQ/frenchNER_4entities), which represents ~385k sentences labeled in 4 categories:
|
38 |
+
| Label | Examples |
|
39 |
+
|:------|:-----------------------------------------------------------|
|
40 |
+
| PER | "La Bruyère", "Gaspard de Coligny", "Wittgenstein" |
|
41 |
+
| ORG | "UTBM", "American Airlines", "id Software" |
|
42 |
+
| LOC | "République du Cap-Vert", "Créteil", "Bordeaux" |
|
43 |
+
| MISC | "Wolfenstein 3D", "Révolution française", "Coupe du monde" |
|
44 |
+
|
45 |
+
The distribution of the entities is as follows:
|
46 |
+
|
47 |
+
<table>
|
48 |
+
<thead>
|
49 |
+
<tr>
|
50 |
+
<th><br>Splits</th>
|
51 |
+
<th><br>O</th>
|
52 |
+
<th><br>PER</th>
|
53 |
+
<th><br>LOC</th>
|
54 |
+
<th><br>ORG</th>
|
55 |
+
<th><br>MISC</th>
|
56 |
+
</tr>
|
57 |
+
</thead>
|
58 |
+
<tbody>
|
59 |
+
<td><br>train</td>
|
60 |
+
<td><br>7,539,692</td>
|
61 |
+
<td><br>307,144</td>
|
62 |
+
<td><br>286,746</td>
|
63 |
+
<td><br>127,089</td>
|
64 |
+
<td><br>799,494</td>
|
65 |
+
</tr>
|
66 |
+
<tr>
|
67 |
+
<td><br>validation</td>
|
68 |
+
<td><br>544,580</td>
|
69 |
+
<td><br>24,034</td>
|
70 |
+
<td><br>21,585</td>
|
71 |
+
<td><br>5,927</td>
|
72 |
+
<td><br>18,221</td>
|
73 |
+
</tr>
|
74 |
+
<tr>
|
75 |
+
<td><br>test</td>
|
76 |
+
<td><br>720,623</td>
|
77 |
+
<td><br>32,870</td>
|
78 |
+
<td><br>29,683</td>
|
79 |
+
<td><br>7,911</td>
|
80 |
+
<td><br>21,760</td>
|
81 |
+
</tr>
|
82 |
+
</tbody>
|
83 |
+
</table>
|
84 |
+
|
85 |
+
|
86 |
+
## Evaluation results
|
87 |
+
|
88 |
+
The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.
|
89 |
+
|
90 |
+
### frenchNER_4entities
|
91 |
+
|
92 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
93 |
+
|
94 |
+
<table>
|
95 |
+
<thead>
|
96 |
+
<tr>
|
97 |
+
<th><br>Model</th>
|
98 |
+
<th><br>PER</th>
|
99 |
+
<th><br>LOC</th>
|
100 |
+
<th><br>ORG</th>
|
101 |
+
<th><br>MISC</th>
|
102 |
+
</tr>
|
103 |
+
</thead>
|
104 |
+
<tbody>
|
105 |
+
<tr>
|
106 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
107 |
+
<td><br>0.971</td>
|
108 |
+
<td><br>0.947</td>
|
109 |
+
<td><br>0.902</td>
|
110 |
+
<td><br>0.663</td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
114 |
+
<td><br>0.974</td>
|
115 |
+
<td><br>0.948</td>
|
116 |
+
<td><br>0.892</td>
|
117 |
+
<td><br>0.658</td>
|
118 |
+
</tr>
|
119 |
+
<tr>
|
120 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
121 |
+
<td><br>0.978</td>
|
122 |
+
<td><br>0.957</td>
|
123 |
+
<td><br>0.904</td>
|
124 |
+
<td><br>0</td>
|
125 |
+
</tr>
|
126 |
+
<tr>
|
127 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
128 |
+
<td><br>0.978</td>
|
129 |
+
<td><br>0.958</td>
|
130 |
+
<td><br>0.903</td>
|
131 |
+
<td><br>0.814</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td rowspan="1"><br>NERmembert-large-4entities (this model)</td>
|
135 |
+
<td><br>0.982</td>
|
136 |
+
<td><br>0.964</td>
|
137 |
+
<td><br>0.919</td>
|
138 |
+
<td><br>0.834</td>
|
139 |
+
</tr>
|
140 |
+
</tbody>
|
141 |
+
</table>
|
142 |
+
|
143 |
+
|
144 |
+
<details>
|
145 |
+
<summary>Full results</summary>
|
146 |
+
<table>
|
147 |
+
<thead>
|
148 |
+
<tr>
|
149 |
+
<th><br>Model</th>
|
150 |
+
<th><br>Metrics</th>
|
151 |
+
<th><br>PER</th>
|
152 |
+
<th><br>LOC</th>
|
153 |
+
<th><br>ORG</th>
|
154 |
+
<th><br>MISC</th>
|
155 |
+
<th><br>O</th>
|
156 |
+
<th><br>Overall</th>
|
157 |
+
</tr>
|
158 |
+
</thead>
|
159 |
+
<tbody>
|
160 |
+
<tr>
|
161 |
+
<td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
162 |
+
<td><br>Precision</td>
|
163 |
+
<td><br>0.952</td>
|
164 |
+
<td><br>0.924</td>
|
165 |
+
<td><br>0.870</td>
|
166 |
+
<td><br>0.845</td>
|
167 |
+
<td><br>0.986</td>
|
168 |
+
<td><br>0.976</td>
|
169 |
+
</tr>
|
170 |
+
<tr>
|
171 |
+
<td><br>Recall</td>
|
172 |
+
<td><br>0.990</td>
|
173 |
+
<td><br>0.972</td>
|
174 |
+
<td><br>0.938</td>
|
175 |
+
<td><br>0.546</td>
|
176 |
+
<td><br>0.992</td>
|
177 |
+
<td><br>0.976</td>
|
178 |
+
</tr>
|
179 |
+
<tr>
|
180 |
+
<td>F1</td>
|
181 |
+
<td><br>0.971</td>
|
182 |
+
<td><br>0.947</td>
|
183 |
+
<td><br>0.902</td>
|
184 |
+
<td><br>0.663</td>
|
185 |
+
<td><br>0.989</td>
|
186 |
+
<td><br>0.976</td>
|
187 |
+
</tr>
|
188 |
+
<tr>
|
189 |
+
<td rowspan="3"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
190 |
+
<td><br>Precision</td>
|
191 |
+
<td><br>0.962</td>
|
192 |
+
<td><br>0.933</td>
|
193 |
+
<td><br>0.857</td>
|
194 |
+
<td><br>0.830</td>
|
195 |
+
<td><br>0.985</td>
|
196 |
+
<td><br>0.976</td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td><br>Recall</td>
|
200 |
+
<td><br>0.987</td>
|
201 |
+
<td><br>0.963</td>
|
202 |
+
<td><br>0.930</td>
|
203 |
+
<td><br>0.545</td>
|
204 |
+
<td><br>0.993</td>
|
205 |
+
<td><br>0.976</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>F1</td>
|
209 |
+
<td><br>0.974</td>
|
210 |
+
<td><br>0.948</td>
|
211 |
+
<td><br>0.892</td>
|
212 |
+
<td><br>0.658</td>
|
213 |
+
<td><br>0.989</td>
|
214 |
+
<td><br>0.976</td>
|
215 |
+
</tr>
|
216 |
+
<tr>
|
217 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
218 |
+
<td><br>Precision</td>
|
219 |
+
<td><br>0.973</td>
|
220 |
+
<td><br>0.955</td>
|
221 |
+
<td><br>0.886</td>
|
222 |
+
<td><br>0</td>
|
223 |
+
<td><br>X</td>
|
224 |
+
<td><br>X</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td><br>Recall</td>
|
228 |
+
<td><br>0.983</td>
|
229 |
+
<td><br>0.960</td>
|
230 |
+
<td><br>0.923</td>
|
231 |
+
<td><br>0</td>
|
232 |
+
<td><br>X</td>
|
233 |
+
<td><br>X</td>
|
234 |
+
</tr>
|
235 |
+
<tr>
|
236 |
+
<td>F1</td>
|
237 |
+
<td><br>0.978</td>
|
238 |
+
<td><br>0.957</td>
|
239 |
+
<td><br>0.904</td>
|
240 |
+
<td><br>0</td>
|
241 |
+
<td><br>X</td>
|
242 |
+
<td><br>X</td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
246 |
+
<td><br>Precision</td>
|
247 |
+
<td><br>0.973</td>
|
248 |
+
<td><br>0.951</td>
|
249 |
+
<td><br>0.888</td>
|
250 |
+
<td><br>0.850</td>
|
251 |
+
<td><br>0.993</td>
|
252 |
+
<td><br>0.984</td>
|
253 |
+
</tr>
|
254 |
+
<tr>
|
255 |
+
<td><br>Recall</td>
|
256 |
+
<td><br>0.983</td>
|
257 |
+
<td><br>0.964</td>
|
258 |
+
<td><br>0.918</td>
|
259 |
+
<td><br>0.781</td>
|
260 |
+
<td><br>0.993</td>
|
261 |
+
<td><br>0.984</td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td>F1</td>
|
265 |
+
<td><br>0.978</td>
|
266 |
+
<td><br>0.958</td>
|
267 |
+
<td><br>0.903</td>
|
268 |
+
<td><br>0.814</td>
|
269 |
+
<td><br>0.993</td>
|
270 |
+
<td><br>0.984</td>
|
271 |
+
</tr>
|
272 |
+
<tr>
|
273 |
+
<td rowspan="3"><br>NERmembert-large-4entities (this model)</td>
|
274 |
+
<td><br>Precision</td>
|
275 |
+
<td><br>0.977</td>
|
276 |
+
<td><br>0.961</td>
|
277 |
+
<td><br>0.896</td>
|
278 |
+
<td><br>0.872</td>
|
279 |
+
<td><br>0.993</td>
|
280 |
+
<td><br>0.986</td>
|
281 |
+
</tr>
|
282 |
+
<tr>
|
283 |
+
<td><br>Recall</td>
|
284 |
+
<td><br>0.987</td>
|
285 |
+
<td><br>0.966</td>
|
286 |
+
<td><br>0.943</td>
|
287 |
+
<td><br>0.798</td>
|
288 |
+
<td><br>0.995</td>
|
289 |
+
<td><br>0.986</td>
|
290 |
+
</tr>
|
291 |
+
<tr>
|
292 |
+
<td>F1</td>
|
293 |
+
<td><br>0.982</td>
|
294 |
+
<td><br>0.964</td>
|
295 |
+
<td><br>0.919</td>
|
296 |
+
<td><br>0.834</td>
|
297 |
+
<td><br>0.994</td>
|
298 |
+
<td><br>0.986</td>
|
299 |
+
</tr>
|
300 |
+
</tbody>
|
301 |
+
</table>
|
302 |
+
</details>
|
303 |
+
|
304 |
+
In detail:
|
305 |
+
|
306 |
+
### multiconer
|
307 |
+
|
308 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
309 |
+
|
310 |
+
<table>
|
311 |
+
<thead>
|
312 |
+
<tr>
|
313 |
+
<th><br>Model</th>
|
314 |
+
<th><br>PER</th>
|
315 |
+
<th><br>LOC</th>
|
316 |
+
<th><br>ORG</th>
|
317 |
+
<th><br>MISC</th>
|
318 |
+
</tr>
|
319 |
+
</thead>
|
320 |
+
<tbody>
|
321 |
+
<tr>
|
322 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
323 |
+
<td><br>0.940</td>
|
324 |
+
<td><br>0.761</td>
|
325 |
+
<td><br>0.723</td>
|
326 |
+
<td><br>0.560</td>
|
327 |
+
</tr>
|
328 |
+
<tr>
|
329 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
330 |
+
<td><br>0.921</td>
|
331 |
+
<td><br>0.748</td>
|
332 |
+
<td><br>0.694</td>
|
333 |
+
<td><br>0.530</td>
|
334 |
+
</tr>
|
335 |
+
<tr>
|
336 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
337 |
+
<td><br>0.960</td>
|
338 |
+
<td><br>0.887</td>
|
339 |
+
<td><br>0.877</td>
|
340 |
+
<td><br>0</td>
|
341 |
+
</tr>
|
342 |
+
<tr>
|
343 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
344 |
+
<td><br>0.960</td>
|
345 |
+
<td><br>0.890</td>
|
346 |
+
<td><br>0.867</td>
|
347 |
+
<td><br>0.852</td>
|
348 |
+
</tr>
|
349 |
+
<tr>
|
350 |
+
<td rowspan="1"><br>NERmembert-large-4entities (this model)</td>
|
351 |
+
<td><br>0.969</td>
|
352 |
+
<td><br>0.919</td>
|
353 |
+
<td><br>0.904</td>
|
354 |
+
<td><br>0.864</td>
|
355 |
+
</tr>
|
356 |
+
</tbody>
|
357 |
+
</table>
|
358 |
+
|
359 |
+
<details>
|
360 |
+
<summary>Full results</summary>
|
361 |
+
<table>
|
362 |
+
<thead>
|
363 |
+
<tr>
|
364 |
+
<th><br>Model</th>
|
365 |
+
<th><br>Metrics</th>
|
366 |
+
<th><br>PER</th>
|
367 |
+
<th><br>LOC</th>
|
368 |
+
<th><br>ORG</th>
|
369 |
+
<th><br>MISC</th>
|
370 |
+
<th><br>O</th>
|
371 |
+
<th><br>Overall</th>
|
372 |
+
</tr>
|
373 |
+
</thead>
|
374 |
+
<tbody>
|
375 |
+
<tr>
|
376 |
+
<td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
377 |
+
<td><br>Precision</td>
|
378 |
+
<td><br>0.908</td>
|
379 |
+
<td><br>0.717</td>
|
380 |
+
<td><br>0.753</td>
|
381 |
+
<td><br>0.620</td>
|
382 |
+
<td><br>0.936</td>
|
383 |
+
<td><br>0.889</td>
|
384 |
+
</tr>
|
385 |
+
<tr>
|
386 |
+
<td><br>Recall</td>
|
387 |
+
<td><br>0.975</td>
|
388 |
+
<td><br>0.811</td>
|
389 |
+
<td><br>0.696</td>
|
390 |
+
<td><br>0.511</td>
|
391 |
+
<td><br>0.938</td>
|
392 |
+
<td><br>0.889</td>
|
393 |
+
</tr>
|
394 |
+
<tr>
|
395 |
+
<td>F1</td>
|
396 |
+
<td><br>0.940</td>
|
397 |
+
<td><br>0.761</td>
|
398 |
+
<td><br>0.723</td>
|
399 |
+
<td><br>0.560</td>
|
400 |
+
<td><br>0.937</td>
|
401 |
+
<td><br>0.889</td>
|
402 |
+
</tr>
|
403 |
+
<tr>
|
404 |
+
<td rowspan="3"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
405 |
+
<td><br>Precision</td>
|
406 |
+
<td><br>0.885</td>
|
407 |
+
<td><br>0.738</td>
|
408 |
+
<td><br>0.737</td>
|
409 |
+
<td><br>0.589</td>
|
410 |
+
<td><br>0.928</td>
|
411 |
+
<td><br>0.881</td>
|
412 |
+
</tr>
|
413 |
+
<tr>
|
414 |
+
<td><br>Recall</td>
|
415 |
+
<td><br>0.960</td>
|
416 |
+
<td><br>0.759</td>
|
417 |
+
<td><br>0.655</td>
|
418 |
+
<td><br>0.482</td>
|
419 |
+
<td><br>0.939</td>
|
420 |
+
<td><br>0.881</td>
|
421 |
+
</tr>
|
422 |
+
<tr>
|
423 |
+
<td>F1</td>
|
424 |
+
<td><br>0.921</td>
|
425 |
+
<td><br>0.748</td>
|
426 |
+
<td><br>0.694</td>
|
427 |
+
<td><br>0.530</td>
|
428 |
+
<td><br>0.934</td>
|
429 |
+
<td><br>0.881</td>
|
430 |
+
</tr>
|
431 |
+
<tr>
|
432 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
433 |
+
<td><br>Precision</td>
|
434 |
+
<td><br>0.957</td>
|
435 |
+
<td><br>0.894</td>
|
436 |
+
<td><br>0.876</td>
|
437 |
+
<td><br>0</td>
|
438 |
+
<td><br>X</td>
|
439 |
+
<td><br>X</td>
|
440 |
+
</tr>
|
441 |
+
<tr>
|
442 |
+
<td><br>Recall</td>
|
443 |
+
<td><br>0.962</td>
|
444 |
+
<td><br>0.880</td>
|
445 |
+
<td><br>0.878</td>
|
446 |
+
<td><br>0</td>
|
447 |
+
<td><br>X</td>
|
448 |
+
<td><br>X</td>
|
449 |
+
</tr>
|
450 |
+
<tr>
|
451 |
+
<td>F1</td>
|
452 |
+
<td><br>0.960</td>
|
453 |
+
<td><br>0.887</td>
|
454 |
+
<td><br>0.877</td>
|
455 |
+
<td><br>0</td>
|
456 |
+
<td><br>X</td>
|
457 |
+
<td><br>X</td>
|
458 |
+
</tr>
|
459 |
+
<tr>
|
460 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
461 |
+
<td><br>Precision</td>
|
462 |
+
<td><br>0.954</td>
|
463 |
+
<td><br>0.893</td>
|
464 |
+
<td><br>0.851</td>
|
465 |
+
<td><br>0.849</td>
|
466 |
+
<td><br>0.979</td>
|
467 |
+
<td><br>0.954</td>
|
468 |
+
</tr>
|
469 |
+
<tr>
|
470 |
+
<td><br>Recall</td>
|
471 |
+
<td><br>0.967</td>
|
472 |
+
<td><br>0.887</td>
|
473 |
+
<td><br>0.883</td>
|
474 |
+
<td><br>0.855</td>
|
475 |
+
<td><br>0.974</td>
|
476 |
+
<td><br>0.954</td>
|
477 |
+
</tr>
|
478 |
+
<tr>
|
479 |
+
<td>F1</td>
|
480 |
+
<td><br>0.960</td>
|
481 |
+
<td><br>0.890</td>
|
482 |
+
<td><br>0.867</td>
|
483 |
+
<td><br>0.852</td>
|
484 |
+
<td><br>0.977</td>
|
485 |
+
<td><br>0.954</td>
|
486 |
+
</tr>
|
487 |
+
<tr>
|
488 |
+
<td rowspan="3"><br>NERmembert-large-4entities (this model)</td>
|
489 |
+
<td><br>Precision</td>
|
490 |
+
<td><br>0.964</td>
|
491 |
+
<td><br>0.922</td>
|
492 |
+
<td><br>0.904</td>
|
493 |
+
<td><br>0.856</td>
|
494 |
+
<td><br>0.981</td>
|
495 |
+
<td><br>0.961</td>
|
496 |
+
</tr>
|
497 |
+
<tr>
|
498 |
+
<td><br>Recall</td>
|
499 |
+
<td><br>0.975</td>
|
500 |
+
<td><br>0.917</td>
|
501 |
+
<td><br>0.904</td>
|
502 |
+
<td><br>0.872</td>
|
503 |
+
<td><br>0.976</td>
|
504 |
+
<td><br>0.961</td>
|
505 |
+
</tr>
|
506 |
+
<tr>
|
507 |
+
<td>F1</td>
|
508 |
+
<td><br>0.969</td>
|
509 |
+
<td><br>0.919</td>
|
510 |
+
<td><br>0.904</td>
|
511 |
+
<td><br>0.864</td>
|
512 |
+
<td><br>0.978</td>
|
513 |
+
<td><br>0.961</td>
|
514 |
+
</tr>
|
515 |
+
</tbody>
|
516 |
+
</table>
|
517 |
+
</details>
|
518 |
+
|
519 |
+
|
520 |
+
### multinerd
|
521 |
+
|
522 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
523 |
+
|
524 |
+
<table>
|
525 |
+
<thead>
|
526 |
+
<tr>
|
527 |
+
<th><br>Model</th>
|
528 |
+
<th><br>PER</th>
|
529 |
+
<th><br>LOC</th>
|
530 |
+
<th><br>ORG</th>
|
531 |
+
<th><br>MISC</th>
|
532 |
+
</tr>
|
533 |
+
</thead>
|
534 |
+
<tbody>
|
535 |
+
<tr>
|
536 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
537 |
+
<td><br>0.962</td>
|
538 |
+
<td><br>0.934</td>
|
539 |
+
<td><br>0.888</td>
|
540 |
+
<td><br>0.419</td>
|
541 |
+
</tr>
|
542 |
+
<tr>
|
543 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
544 |
+
<td><br>0.972</td>
|
545 |
+
<td><br>0.938</td>
|
546 |
+
<td><br>0.884</td>
|
547 |
+
<td><br>0.430</td>
|
548 |
+
</tr>
|
549 |
+
<tr>
|
550 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
551 |
+
<td><br>0.985</td>
|
552 |
+
<td><br>0.973</td>
|
553 |
+
<td><br>0.938</td>
|
554 |
+
<td><br>0</td>
|
555 |
+
</tr>
|
556 |
+
<tr>
|
557 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
558 |
+
<td><br>0.985</td>
|
559 |
+
<td><br>0.973</td>
|
560 |
+
<td><br>0.938</td>
|
561 |
+
<td><br>0.770</td>
|
562 |
+
</tr>
|
563 |
+
<tr>
|
564 |
+
<td rowspan="1"><br>NERmembert-large-4entities (this model)</td>
|
565 |
+
<td><br>0.987</td>
|
566 |
+
<td><br>0.976</td>
|
567 |
+
<td><br>0.948</td>
|
568 |
+
<td><br>0.790</td>
|
569 |
+
</tr>
|
570 |
+
</tbody>
|
571 |
+
</table>
|
572 |
+
|
573 |
+
<details>
|
574 |
+
<summary>Full results</summary>
|
575 |
+
<table>
|
576 |
+
<thead>
|
577 |
+
<tr>
|
578 |
+
<th><br>Model</th>
|
579 |
+
<th><br>Metrics</th>
|
580 |
+
<th><br>PER</th>
|
581 |
+
<th><br>LOC</th>
|
582 |
+
<th><br>ORG</th>
|
583 |
+
<th><br>MISC</th>
|
584 |
+
<th><br>O</th>
|
585 |
+
<th><br>Overall</th>
|
586 |
+
</tr>
|
587 |
+
</thead>
|
588 |
+
<tbody>
|
589 |
+
<tr>
|
590 |
+
<td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
591 |
+
<td><br>Precision</td>
|
592 |
+
<td><br>0.931</td>
|
593 |
+
<td><br>0.893</td>
|
594 |
+
<td><br>0.827</td>
|
595 |
+
<td><br>0.725</td>
|
596 |
+
<td><br>0.979</td>
|
597 |
+
<td><br>0.966</td>
|
598 |
+
</tr>
|
599 |
+
<tr>
|
600 |
+
<td><br>Recall</td>
|
601 |
+
<td><br>0.994</td>
|
602 |
+
<td><br>0.980</td>
|
603 |
+
<td><br>0.959</td>
|
604 |
+
<td><br>0.295</td>
|
605 |
+
<td><br>0.990</td>
|
606 |
+
<td><br>0.966</td>
|
607 |
+
</tr>
|
608 |
+
<tr>
|
609 |
+
<td>F1</td>
|
610 |
+
<td><br>0.962</td>
|
611 |
+
<td><br>0.934</td>
|
612 |
+
<td><br>0.888</td>
|
613 |
+
<td><br>0.419</td>
|
614 |
+
<td><br>0.984</td>
|
615 |
+
<td><br>0.966</td>
|
616 |
+
</tr>
|
617 |
+
<tr>
|
618 |
+
<td rowspan="3"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
619 |
+
<td><br>Precision</td>
|
620 |
+
<td><br>0.954</td>
|
621 |
+
<td><br>0.908</td>
|
622 |
+
<td><br>0.817</td>
|
623 |
+
<td><br>0.705</td>
|
624 |
+
<td><br>0.977</td>
|
625 |
+
<td><br>0.967</td>
|
626 |
+
</tr>
|
627 |
+
<tr>
|
628 |
+
<td><br>Recall</td>
|
629 |
+
<td><br>0.991</td>
|
630 |
+
<td><br>0.969</td>
|
631 |
+
<td><br>0.963</td>
|
632 |
+
<td><br>0.310</td>
|
633 |
+
<td><br>0.990</td>
|
634 |
+
<td><br>0.967</td>
|
635 |
+
</tr>
|
636 |
+
<tr>
|
637 |
+
<td>F1</td>
|
638 |
+
<td><br>0.972</td>
|
639 |
+
<td><br>0.938</td>
|
640 |
+
<td><br>0.884</td>
|
641 |
+
<td><br>0.430</td>
|
642 |
+
<td><br>0.984</td>
|
643 |
+
<td><br>0.967</td>
|
644 |
+
</tr>
|
645 |
+
<tr>
|
646 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
647 |
+
<td><br>Precision</td>
|
648 |
+
<td><br>0.974</td>
|
649 |
+
<td><br>0.965</td>
|
650 |
+
<td><br>0.910</td>
|
651 |
+
<td><br>0</td>
|
652 |
+
<td><br>X</td>
|
653 |
+
<td><br>X</td>
|
654 |
+
</tr>
|
655 |
+
<tr>
|
656 |
+
<td><br>Recall</td>
|
657 |
+
<td><br>0.995</td>
|
658 |
+
<td><br>0.981</td>
|
659 |
+
<td><br>0.968</td>
|
660 |
+
<td><br>0</td>
|
661 |
+
<td><br>X</td>
|
662 |
+
<td><br>X</td>
|
663 |
+
</tr>
|
664 |
+
<tr>
|
665 |
+
<td>F1</td>
|
666 |
+
<td><br>0.985</td>
|
667 |
+
<td><br>0.973</td>
|
668 |
+
<td><br>0.938</td>
|
669 |
+
<td><br>0</td>
|
670 |
+
<td><br>X</td>
|
671 |
+
<td><br>X</td>
|
672 |
+
</tr>
|
673 |
+
<tr>
|
674 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
675 |
+
<td><br>Precision</td>
|
676 |
+
<td><br>0.976</td>
|
677 |
+
<td><br>0.961</td>
|
678 |
+
<td><br>0.91</td>
|
679 |
+
<td><br>0.829</td>
|
680 |
+
<td><br>0.991</td>
|
681 |
+
<td><br>0.983</td>
|
682 |
+
</tr>
|
683 |
+
<tr>
|
684 |
+
<td><br>Recall</td>
|
685 |
+
<td><br>0.994</td>
|
686 |
+
<td><br>0.985</td>
|
687 |
+
<td><br>0.967</td>
|
688 |
+
<td><br>0.719</td>
|
689 |
+
<td><br>0.993</td>
|
690 |
+
<td><br>0.983</td>
|
691 |
+
</tr>
|
692 |
+
<tr>
|
693 |
+
<td>F1</td>
|
694 |
+
<td><br>0.985</td>
|
695 |
+
<td><br>0.973</td>
|
696 |
+
<td><br>0.938</td>
|
697 |
+
<td><br>0.770</td>
|
698 |
+
<td><br>0.992</td>
|
699 |
+
<td><br>0.983</td>
|
700 |
+
</tr>
|
701 |
+
<tr>
|
702 |
+
<td rowspan="3"><br>NERmembert-large-4entities (this model)</td>
|
703 |
+
<td><br>Precision</td>
|
704 |
+
<td><br>0.979</td>
|
705 |
+
<td><br>0.967</td>
|
706 |
+
<td><br>0.922</td>
|
707 |
+
<td><br>0.852</td>
|
708 |
+
<td><br>0.991</td>
|
709 |
+
<td><br>0.985</td>
|
710 |
+
</tr>
|
711 |
+
<tr>
|
712 |
+
<td><br>Recall</td>
|
713 |
+
<td><br>0.996</td>
|
714 |
+
<td><br>0.986</td>
|
715 |
+
<td><br>0.974</td>
|
716 |
+
<td><br>0.736</td>
|
717 |
+
<td><br>0.994</td>
|
718 |
+
<td><br>0.985</td>
|
719 |
+
</tr>
|
720 |
+
<tr>
|
721 |
+
<td>F1</td>
|
722 |
+
<td><br>0.987</td>
|
723 |
+
<td><br>0.976</td>
|
724 |
+
<td><br>0.948</td>
|
725 |
+
<td><br>0.790</td>
|
726 |
+
<td><br>0.993</td>
|
727 |
+
<td><br>0.985</td>
|
728 |
+
</tr>
|
729 |
+
</tbody>
|
730 |
+
</table>
|
731 |
+
</details>
|
732 |
+
|
733 |
+
### wikiner
|
734 |
+
|
735 |
+
For space reasons, we show only the F1 of the different models. You can see the full results below the table.
|
736 |
+
|
737 |
+
<table>
|
738 |
+
<thead>
|
739 |
+
<tr>
|
740 |
+
<th><br>Model</th>
|
741 |
+
<th><br>PER</th>
|
742 |
+
<th><br>LOC</th>
|
743 |
+
<th><br>ORG</th>
|
744 |
+
<th><br>MISC</th>
|
745 |
+
</tr>
|
746 |
+
</thead>
|
747 |
+
<tbody>
|
748 |
+
<tr>
|
749 |
+
<td rowspan="1"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
750 |
+
<td><br>0.986</td>
|
751 |
+
<td><br>0.966</td>
|
752 |
+
<td><br>0.938</td>
|
753 |
+
<td><br>0.938</td>
|
754 |
+
</tr>
|
755 |
+
<tr>
|
756 |
+
<td rowspan="1"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
757 |
+
<td><br>0.983</td>
|
758 |
+
<td><br>0.964</td>
|
759 |
+
<td><br>0.925</td>
|
760 |
+
<td><br>0.926</td>
|
761 |
+
</tr>
|
762 |
+
<tr>
|
763 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
764 |
+
<td><br>0.970</td>
|
765 |
+
<td><br>0.945</td>
|
766 |
+
<td><br>0.878</td>
|
767 |
+
<td><br>0</td>
|
768 |
+
</tr>
|
769 |
+
<tr>
|
770 |
+
<td rowspan="1"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
771 |
+
<td><br>0.970</td>
|
772 |
+
<td><br>0.945</td>
|
773 |
+
<td><br>0.876</td>
|
774 |
+
<td><br>0.872</td>
|
775 |
+
</tr>
|
776 |
+
<tr>
|
777 |
+
<td rowspan="1"><br>NERmembert-large-4entities (this model)</td>
|
778 |
+
<td><br>0.975</td>
|
779 |
+
<td><br>0.953</td>
|
780 |
+
<td><br>0.896</td>
|
781 |
+
<td><br>0.893</td>
|
782 |
+
</tr>
|
783 |
+
</tbody>
|
784 |
+
</table>
|
785 |
+
|
786 |
+
<details>
|
787 |
+
<summary>Full results</summary>
|
788 |
+
<table>
|
789 |
+
<thead>
|
790 |
+
<tr>
|
791 |
+
<th><br>Model</th>
|
792 |
+
<th><br>Metrics</th>
|
793 |
+
<th><br>PER</th>
|
794 |
+
<th><br>LOC</th>
|
795 |
+
<th><br>ORG</th>
|
796 |
+
<th><br>MISC</th>
|
797 |
+
<th><br>O</th>
|
798 |
+
<th><br>Overall</th>
|
799 |
+
</tr>
|
800 |
+
</thead>
|
801 |
+
<tbody>
|
802 |
+
<tr>
|
803 |
+
<td rowspan="3"><br><a href="https://hf.co/Jean-Baptiste/camembert-ner">Jean-Baptiste/camembert-ner</a></td>
|
804 |
+
<td><br>Precision</td>
|
805 |
+
<td><br>0.986</td>
|
806 |
+
<td><br>0.962</td>
|
807 |
+
<td><br>0.925</td>
|
808 |
+
<td><br>0.943</td>
|
809 |
+
<td><br>0.998</td>
|
810 |
+
<td><br>0.992</td>
|
811 |
+
</tr>
|
812 |
+
<tr>
|
813 |
+
<td><br>Recall</td>
|
814 |
+
<td><br>0.987</td>
|
815 |
+
<td><br>0.969</td>
|
816 |
+
<td><br>0.951</td>
|
817 |
+
<td><br>0.933</td>
|
818 |
+
<td><br>0.997</td>
|
819 |
+
<td><br>0.992</td>
|
820 |
+
</tr>
|
821 |
+
<tr>
|
822 |
+
<td>F1</td>
|
823 |
+
<td><br>0.986</td>
|
824 |
+
<td><br>0.966</td>
|
825 |
+
<td><br>0.938</td>
|
826 |
+
<td><br>0.938</td>
|
827 |
+
<td><br>0.998</td>
|
828 |
+
<td><br>0.992</td>
|
829 |
+
</tr>
|
830 |
+
<tr>
|
831 |
+
<td rowspan="3"><br><a href="https://hf/cmarkea/distilcamembert-base-ner">cmarkea/distilcamembert-base-ner</a></td>
|
832 |
+
<td><br>Precision</td>
|
833 |
+
<td><br>0.982</td>
|
834 |
+
<td><br>0.964</td>
|
835 |
+
<td><br>0.910</td>
|
836 |
+
<td><br>0.942</td>
|
837 |
+
<td><br>0.997</td>
|
838 |
+
<td><br>0.991</td>
|
839 |
+
</tr>
|
840 |
+
<tr>
|
841 |
+
<td><br>Recall</td>
|
842 |
+
<td><br>0.985</td>
|
843 |
+
<td><br>0.963</td>
|
844 |
+
<td><br>0.940</td>
|
845 |
+
<td><br>0.910</td>
|
846 |
+
<td><br>0.998</td>
|
847 |
+
<td><br>0.991</td>
|
848 |
+
</tr>
|
849 |
+
<tr>
|
850 |
+
<td>F1</td>
|
851 |
+
<td><br>0.983</td>
|
852 |
+
<td><br>0.964</td>
|
853 |
+
<td><br>0.925</td>
|
854 |
+
<td><br>0.926</td>
|
855 |
+
<td><br>0.997</td>
|
856 |
+
<td><br>0.991</td>
|
857 |
+
</tr>
|
858 |
+
<tr>
|
859 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-3entities">NERmembert-base-3entities</a></td>
|
860 |
+
<td><br>Precision</td>
|
861 |
+
<td><br>0.971</td>
|
862 |
+
<td><br>0.947</td>
|
863 |
+
<td><br>0.866</td>
|
864 |
+
<td><br>0</td>
|
865 |
+
<td><br>X</td>
|
866 |
+
<td><br>X</td>
|
867 |
+
</tr>
|
868 |
+
<tr>
|
869 |
+
<td><br>Recall</td>
|
870 |
+
<td><br>0.969</td>
|
871 |
+
<td><br>0.943</td>
|
872 |
+
<td><br>0.891</td>
|
873 |
+
<td><br>0</td>
|
874 |
+
<td><br>X</td>
|
875 |
+
<td><br>X</td>
|
876 |
+
</tr>
|
877 |
+
<tr>
|
878 |
+
<td>F1</td>
|
879 |
+
<td><br>0.970</td>
|
880 |
+
<td><br>0.945</td>
|
881 |
+
<td><br>0.878</td>
|
882 |
+
<td><br>0</td>
|
883 |
+
<td><br>X</td>
|
884 |
+
<td><br>X</td>
|
885 |
+
</tr>
|
886 |
+
<tr>
|
887 |
+
<td rowspan="3"><br><a href="https://hf/CATIE-AQ/NERmembert-base-4entities">NERmembert-base-4entities</a></td>
|
888 |
+
<td><br>Precision</td>
|
889 |
+
<td><br>0.970</td>
|
890 |
+
<td><br>0.944</td>
|
891 |
+
<td><br>0.872</td>
|
892 |
+
<td><br>0.878</td>
|
893 |
+
<td><br>0.996</td>
|
894 |
+
<td><br>0.986</td>
|
895 |
+
</tr>
|
896 |
+
<tr>
|
897 |
+
<td><br>Recall</td>
|
898 |
+
<td><br>0.969</td>
|
899 |
+
<td><br>0.947</td>
|
900 |
+
<td><br>0.880</td>
|
901 |
+
<td><br>0.866</td>
|
902 |
+
<td><br>0.996</td>
|
903 |
+
<td><br>0.986</td>
|
904 |
+
</tr>
|
905 |
+
<tr>
|
906 |
+
<td>F1</td>
|
907 |
+
<td><br>0.970</td>
|
908 |
+
<td><br>0.945</td>
|
909 |
+
<td><br>0.876</td>
|
910 |
+
<td><br>0.872</td>
|
911 |
+
<td><br>0.996</td>
|
912 |
+
<td><br>0.986</td>
|
913 |
+
</tr>
|
914 |
+
<tr>
|
915 |
+
<td rowspan="3"><br>NERmembert-large-4entities (this model)</td>
|
916 |
+
<td><br>Precision</td>
|
917 |
+
<td><br>0.975</td>
|
918 |
+
<td><br>0.957</td>
|
919 |
+
<td><br>0.872</td>
|
920 |
+
<td><br>0.901</td>
|
921 |
+
<td><br>0.997</td>
|
922 |
+
<td><br>0.989</td>
|
923 |
+
</tr>
|
924 |
+
<tr>
|
925 |
+
<td><br>Recall</td>
|
926 |
+
<td><br>0.975</td>
|
927 |
+
<td><br>0.949</td>
|
928 |
+
<td><br>0.922</td>
|
929 |
+
<td><br>0.884</td>
|
930 |
+
<td><br>0.997</td>
|
931 |
+
<td><br>0.989</td>
|
932 |
+
</tr>
|
933 |
+
<tr>
|
934 |
+
<td>F1</td>
|
935 |
+
<td><br>0.975</td>
|
936 |
+
<td><br>0.953</td>
|
937 |
+
<td><br>0.896</td>
|
938 |
+
<td><br>0.893</td>
|
939 |
+
<td><br>0.997</td>
|
940 |
+
<td><br>0.989</td>
|
941 |
+
</tr>
|
942 |
+
</tbody>
|
943 |
+
</table>
|
944 |
+
</details>
|
945 |
+
|
946 |
+
## Usage
|
947 |
+
### Code
|
948 |
+
|
949 |
+
```python
|
950 |
+
from transformers import pipeline
|
951 |
+
|
952 |
+
ner = pipeline('token-classification', model='CATIE-AQ/NERmembert-large-4entities', tokenizer='CATIE-AQ/NERmembert-large-4entities', aggregation_strategy="simple")
|
953 |
+
|
954 |
+
results = ner(
|
955 |
+
"Assurés de disputer l'Euro 2024 en Allemagne l'été prochain (du 14 juin au 14 juillet) depuis leur victoire aux Pays-Bas, les Bleus ont fait le nécessaire pour avoir des certitudes. Avec six victoires en six matchs officiels et un seul but encaissé, Didier Deschamps a consolidé les acquis de la dernière Coupe du monde. Les joueurs clés sont connus : Kylian Mbappé, Aurélien Tchouameni, Antoine Griezmann, Ibrahima Konaté ou encore Mike Maignan."
|
956 |
+
)
|
957 |
+
|
958 |
+
print(result)
|
959 |
+
```
|
960 |
+
```python
|
961 |
+
|
962 |
+
```
|
963 |
+
|
964 |
+
### Try it through Space
|
965 |
+
A Space has been created to test the model. It is available [here](https://huggingface.co/spaces/CATIE-AQ/NERmembert).
|
966 |
|
|
|
967 |
|
968 |
## Training procedure
|
969 |
|
|
|
993 |
- Pytorch 2.1.2
|
994 |
- Datasets 2.16.1
|
995 |
- Tokenizers 0.15.0
|
996 |
+
|
997 |
+
|
998 |
+
## Environmental Impact
|
999 |
+
|
1000 |
+
*Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.*
|
1001 |
+
|
1002 |
+
- **Hardware Type:** A100 PCIe 40/80GB
|
1003 |
+
- **Hours used:** 4h17min
|
1004 |
+
- **Cloud Provider:** Private Infrastructure
|
1005 |
+
- **Carbon Efficiency (kg/kWh):** 0.078 (estimated from [electricitymaps](https://app.electricitymaps.com/zone/FR) for the day of January 10, 2024.)
|
1006 |
+
- **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 0.08 kg eq. CO2
|
1007 |
+
|
1008 |
+
|
1009 |
+
|
1010 |
+
## Citations
|
1011 |
+
|
1012 |
+
### NERmembert-large-4entities
|
1013 |
+
```
|
1014 |
+
TODO
|
1015 |
+
```
|
1016 |
+
|
1017 |
+
### multiconer
|
1018 |
+
|
1019 |
+
> @inproceedings{multiconer2-report,
|
1020 |
+
title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
|
1021 |
+
author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
|
1022 |
+
booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
|
1023 |
+
year={2023},
|
1024 |
+
publisher={Association for Computational Linguistics}}
|
1025 |
+
|
1026 |
+
> @article{multiconer2-data,
|
1027 |
+
title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
|
1028 |
+
author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
|
1029 |
+
year={2023}}
|
1030 |
+
|
1031 |
+
|
1032 |
+
### multinerd
|
1033 |
+
|
1034 |
+
> @inproceedings{tedeschi-navigli-2022-multinerd,
|
1035 |
+
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
|
1036 |
+
author = "Tedeschi, Simone and Navigli, Roberto",
|
1037 |
+
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
|
1038 |
+
month = jul,
|
1039 |
+
year = "2022",
|
1040 |
+
address = "Seattle, United States",
|
1041 |
+
publisher = "Association for Computational Linguistics",
|
1042 |
+
url = "https://aclanthology.org/2022.findings-naacl.60",
|
1043 |
+
doi = "10.18653/v1/2022.findings-naacl.60",
|
1044 |
+
pages = "801--812"}
|
1045 |
+
|
1046 |
+
### pii-masking-200k
|
1047 |
+
|
1048 |
+
> @misc {ai4privacy_2023,
|
1049 |
+
author = { {ai4Privacy} },
|
1050 |
+
title = { pii-masking-200k (Revision 1d4c0a1) },
|
1051 |
+
year = 2023,
|
1052 |
+
url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k },
|
1053 |
+
doi = { 10.57967/hf/1532 },
|
1054 |
+
publisher = { Hugging Face }}
|
1055 |
+
|
1056 |
+
### wikiner
|
1057 |
+
|
1058 |
+
> @article{NOTHMAN2013151,
|
1059 |
+
title = {Learning multilingual named entity recognition from Wikipedia},
|
1060 |
+
journal = {Artificial Intelligence},
|
1061 |
+
volume = {194},
|
1062 |
+
pages = {151-175},
|
1063 |
+
year = {2013},
|
1064 |
+
note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
|
1065 |
+
issn = {0004-3702},
|
1066 |
+
doi = {https://doi.org/10.1016/j.artint.2012.03.006},
|
1067 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
|
1068 |
+
author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
|
1069 |
+
|
1070 |
+
|
1071 |
+
### frenchNER_4entities
|
1072 |
+
```
|
1073 |
+
TODO
|
1074 |
+
```
|
1075 |
+
|
1076 |
+
### CamemBERT
|
1077 |
+
> @inproceedings{martin2020camembert,
|
1078 |
+
title={CamemBERT: a Tasty French Language Model},
|
1079 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
1080 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
1081 |
+
year={2020}}
|
1082 |
+
|
1083 |
+
|
1084 |
+
## License
|
1085 |
+
[cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
|