File size: 1,280 Bytes
a1d66ca 22055db a1d66ca 22055db a1d66ca 22055db a1d66ca c863daa a1d66ca 1c9464c a1d66ca e049875 a1d66ca 22055db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
base_model: internlm/internlm2-chat-7b
datasets:
- CAS-SIAT-XinHai/CPsyCoun
language:
- zh
---
# CPsyCounX
This model is a fine-tuned version of [internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) on the [CPsyCounD](https://huggingface.co/datasets/CAS-SIAT-XinHai/CPsyCoun) dataset.
## Model description
**CPsyCounX** is a large language model designed for Chinese Psychological Counseling. Paper: [CPsyCoun](https://arxiv.org/abs/2405.16433).
## Training and evaluation data
- Train: [CPsyCounD](https://huggingface.co/datasets/CAS-SIAT-XinHai/CPsyCoun)
- Evaluate: [CPsyCounE](https://github.com/CAS-SIAT-XinHai/CPsyCoun/tree/main/CPsyCounE)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 28
- total_train_batch_size: 448
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 9.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |